The due date is on October 3 (Wednesday), 2001.

1. Prove that a group G cannot have a subgroup H with $|H| = n - 1$, where $n = |G| > 2$.
2. Let $H_1 \leq H_2 \leq \cdots$ be an ascending chain of subgroups of a group G. Prove that $\bigcup_{i=0}^{\infty} H_i$ is a subgroup of G.

3. \star Let G be an abelian group. Prove that $H = \{ g \in G \mid |g| < \infty \}$ is a subgroup of G, called the torsion subgroup of G.

4. Let H be a subgroup of the group G.

 \star Show that $H \leq N_G(H)$.

 \star Show that $H \leq C_G(H)$ if and only if H is abelian.

5. Let H be a subgroup of order 2 in G. Show that $N_G(H) = C_G(H)$. Deduce that if $N_G(H) = G$ then $H \leq Z(G)$.

6. Prove that the subgroup generated by any two distinct elements of order 2 in S_3 is all of S_3.

7. Draw the lattice subgroup of: $\mathbb{Z}/16\mathbb{Z}$ and $\mathbb{Z}/24\mathbb{Z}$.

8. Let $G = \{1, a, b, c\}$ be a group of order 4. Show that either $G \cong \mathbb{Z}/4\mathbb{Z}$ or $G \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

9. Let $G = \langle x \rangle$ be a cyclic subgroup of order n. Our goal is to show that the group $(\text{Aut}(G), \circ)$ of automorphisms of G is an abelian group of order $\varphi(n)$, where φ is Euler’s function.

 For each integer a define the map

 $\sigma_a: G \longrightarrow G, \quad x \mapsto \sigma_a(x) = x^a$.

 \star Prove that σ_a is an automorphism of G if and only if $(a, n) = 1$.

 \star Prove that $\sigma_a = \sigma_b$ if and only if $a \equiv b \pmod{n}$.

 \star Prove that every automorphism of G is equal to σ_a for some a.

 \star Prove that $\sigma_a \circ \sigma_b = \sigma_{ab}$.

 Deduce that the map

 $\theta: (\mathbb{Z}/n\mathbb{Z})^\times \longrightarrow \text{Aut}(G), \quad \overline{a} \mapsto \theta(\overline{a}) = \sigma_a$

 is an isomorphism.

10. Let G be a finite group of order n. Use Lagrange’s Theorem to show that the map

 $\gamma: G \longrightarrow G, \quad g \mapsto \gamma(g) = g^k$

 is surjective for any integer k relatively prime to n. That is, for such integer k any element $g \in G$ has a k^{th} root in G.

1