• Basics of congruences (continued)
 – Do you know how congruences behave when we do division? Do you know when “cancel-
cellation” is allowed? Can you make use of these properties of congruences to help
make calculation of least residues simpler?
 – Suggested problems:
 1. Prove that 17 does not divide $5n^2 + 15$ for any integer n.
 2. If n is an integer not divisible by 2 or 3, show that $n^2 \equiv 1 \pmod{24}$.

• Finding the day of the week
 – Given the day and the month of a particular year, can you find out which day of the
week it is? (You will be given the month table in exams.)
 – Suggested problems: Pick any date after 1752. You can check your answer online –
there are many websites that have the day of the week calculator, just do a google
search.

• The theorems of Fermat and Euler
 – What does Fermat’s Little theorem say?
 – Can you state the definition of the Euler ϕ-function? Given an integer m, do you know
what $\phi(m)$ is? How can prime factorization help?
 – What is the definition of a reduced residue system modulo m? How many elements are
there in a reduced residue system? Can you give a few examples of reduced residue
systems modulo m?
 – Euler generalized Fermat’s Little theorem. What does his result say?
 – Do you know how to use the theorems of Fermat and Euler to help simplify calculations
of least residues?
 – Suggested problems:
 1. Find a reduced residue system modulo 7 composed entirely of multiplies of 3.
 2. Show that the numbers 5, 5^2, 5^3, 5^4, 5^5, 5^6 form a reduced residue system modulo
18.
 3. If p is an odd prime and $p \not| a$, show that $a^{(p-1)/2} \equiv \pm 1 \pmod{p}$.
 4. Give an example to show that the result of the above exercise is not necessarily
true if p is replaced by an arbitrary positive n with $\gcd(a, n) = 1$.
 5. If p and q are distinct primes, prove that $p^{q-1} + q^{p-1} \equiv 1 \pmod{pq}$.

• Linear congruences
 – What is a linear congruence? What do we mean by a solution to a linear congruence?
 Given the linear congruence $ax \equiv b \pmod{m}$ and an integer x', do you know how to
check whether x' is a solution to the given congruence?
 – What is the relationship between linear congruence and linear Diophantine equation?
 – What is the criterion for a linear congruence to have solution(s)? If it is solvable, how
many incongruent solutions are there?
 – There are multiple ways to find one solution to a linear congruence. For example, trial-
and-error, Euclidean algorithm, multiplying and simplifying trick, and Euler’s Theorem.
 – What is the definition of a multiplicative inverse of a modulo m? Does every integer
have an inverse modulo m? Can an integer has two inverses modulo m? If a has an
inverse modulo m, do you know how to find it?
 – Can you state Wilson’s Theorem? Are you familiar with how to use Wilson’s Theorem?
 – Suggested problems:
 1. Solve the following linear congruences:
 (i) $25x \equiv 4 \pmod{11}$
(ii) \(15x \equiv 3 \pmod{9}\)
(iii) \(34x \equiv 60 \pmod{98}\)
(iv) \(35x \equiv 15 \pmod{182}\)

2. Use Euler’s Theorem to solve \(77x \equiv 28 \pmod{36}\) and \(77x \equiv 14 \pmod{105}\).

- Application: Cryptography
 - Do you know what a Caesar cipher is? A generalized Caesar cipher? Is there any constraint on the multiplier or shift constant for a generalized Caesar cipher?
 - Do you know how to encrypt and decrypt messages with a (generalized) Caesar cipher?
 - Can you break a cipher?
 - Suggested problems: See lecture notes on cryptography.

- Chinese Remainder Theorem
 - What does the Chinese Remainder Theorem say?
 - Do you know how to use the Chinese Remainder Theorem to solve a (system) of linear congruence(s)?
 - Suggested problems:
 1. Find the least positive integer that leaves remainders of 2, 3 and 2 when divided by 3, 5 and 7 respectively.
 2. Find the integer \(x\) such that \(-2310 \leq x \leq 2310\) and
 \[
 x \equiv 1 \pmod{21},
 x \equiv 2 \pmod{20},
 x \equiv 3 \pmod{11}.
 \]
 3. Find the solution to the system
 \[
 3x \equiv 7 \pmod{5},
 x \equiv 1 \pmod{4},
 5x \equiv 2 \pmod{11}.
 \]