Here is a set of review problems.

1. Find an equation of the tangent plane to the surface \(x^2 + z^2 e^{y-x} = 13 \) at the point \(P = (2, 3, \frac{3}{\sqrt{e}}) \).

2. Calculate the directional derivative in the direction \(\mathbf{v} \) at the given point \(P \) for \(f(x, y, z) = x \ln(y+z) \), \(\mathbf{v} = (2, -1, 1) \), and \(P = (2, e, e) \).

3. Use the chain rule to calculate the partial derivatives: \(\frac{\partial h}{\partial q} \) at \((q, r) = (3, 2) \), where \(h(u, v) = ue^v \), \(u = q^3 \), \(v = qr^2 \).

4. Use implicit differentiation to calculate the partial derivative: \(\frac{\partial w}{\partial z} \), where \(x^2 w + w^3 + wz^2 + 3yz = 0 \).

5. Find the critical points of the function, then use the Second Derivative Test to determine whether they are local minima, local maxima, or saddle points: \(f(x, y) = x^3 + y^4 - 6x - 2y^2 \); \(g(x, y) = \ln x + 2 \ln y - x - 4y \).

6. Determine the global extreme values of the function on the given domain: \(f(x, y) = (4y^2 - x^2)e^{-x^2-y^2} \), \(x^2 + y^2 \leq 2 \).

7. Calculate the double integral
\[
\int \int_R (xy^2 + \frac{y}{x}) \, dA
\]
where
\[
R = \{(x, y)| 2 \leq x \leq 3, -1 \leq y \leq 0\}.
\]

8. Use the polar coordinate to calculate the double integral
\[
\int_0^1 \int_y^{\sqrt{1-y^2}} \frac{1}{3 + x^2 + y^2} \, dx \, dy.
\]

9. Evaluate the double integral
\[
\int_0^2 \int_{-\sqrt{4-y^2}}^{\sqrt{4-y^2}} x^2 y^2 \, dx \, dy.
\]

10. Calculate the volume of the region above the cone \(z = \sqrt{x^2 + y^2} \) and below the sphere \(x^2 + y^2 + z^2 = 1 \).

11. Find the mass of the region \(D \) that is enclosed by the cardioid \(r = 1 + \cos \theta \) with density \(\rho(x, y) = \sqrt{x^2 + y^2} \).
12. Use the Fubini’s theorem (or equivalently, the iterated integration) to evaluate the triple integral

\[\int \int \int_E yz \cos(x^5) \, dV, \]

where

\[E = \{(x, y, z) \mid 0 \leq 1 \leq 1, \ 0 \leq y \leq x, \ 0 \leq z \leq 2x\}. \]

13. Use the spherical coordinates to calculate

\[\int_{-2}^{2} \int_{0}^{\sqrt{4-y^2}} \int_{-\sqrt{4-x^2-y^2}}^{\sqrt{4-x^2-y^2}} y^2 \sqrt{x^2 + y^2 + z^2} \, dz \, dx \, dy. \]

14. Find the center of mass for the lamina that occupies the region \(D \) and has the given density function \(\rho \): \(D \) is the triangular region with vertices \((0,0), (2,1), (0,3)\); \(\rho(x,y) = x + y \).

15. Evaluate the double integral by making an appropriate change of variables

\[\int \int_{R} \frac{x + 2y}{\cos(x - y)} \, dx \, dy, \]

where \(R \) is the parallelogram bounded by the lines \(y = x, \ y = x-14, \ x+2y = 0, \ x+2y = 2 \).

16. Use the map

\[G(u,v) = \left(\frac{u + v}{2}, \frac{u - v}{2} \right) \]

to compute

\[\int \int_{\mathcal{R}} \left((x - y) \sin(x + y) \right)^2 \, dx \, dy, \]

where \(\mathcal{R} \) is the square with vertices \((\pi, 0), (2\pi, \pi), (\pi, 2\pi), \mbox{ and } (0, \pi)\).