
Chapter Three

The Beginnings of Written Mathematics: Egypt

The Urban Revolution and Its African Origins

In the previous chapter we began our examination of early evidence of 
mathematical activity with an artifact found in the middle of Africa. For 
the next stage of our journey we remain on the same continent but move 
north to Egypt. Egypt is generally recognized as the homeland of one of the 
four early civilizations that grew up along the great river valleys of Africa 
and Asia over five thousand years ago, the other three being in Mesopota-
mia, India, and China. Egyptian civilization did not emerge out of the blue 
as a full- blown civilization without any African roots. This is supported by 
evidence of large concentrations of agricultural implements carbon- dated 
to around 13,000 BC, found during the UNESCO- led operations to salvage 
the ancient monuments of Nubia.

Although there are no tangible traces of the origins of these Neolithic 
communities, recent archaeological discoveries indicate that they may have 
belonged to groups from the once- fertile Sahara region who were forced to 
migrate, initially to the areas south and east, as the desert spread. So, just as 
Egypt was a “gift of the Nile” (in the words of Herodotus), the culture and 
people of Egypt were at least initially a “gift” of the heartlands of Africa, 
the inhabitants of which were referred to at times as “Ethiopians.” This is 
borne out by the historian Diodorus Siculus, who wrote around 50 BC that 
the Egyptians “are colonists sent out by the Ethiopians. . . . And the large 
part of the customs of the Egyptians . . . are Ethiopian, the colonists still 
preserving their ancient manners” (Davidson 1987, p. 7).1

It is important that the African roots of the Egyptian civilization be em-
phasized so as to counter the still deeply entrenched view that the ancient 
Egyptians were racially, linguistically, and even geographically separated 
from Africa.2 The work during the last fifty years, well summarized by 
Bernal (1987) and Davidson (1987), lays bare the flimsy scholarship and 
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80 Chapter 3

ideological bias of those who persist in regarding ancient Egypt as a sepa-
rate entity, plucked out of Africa and replanted in the middle of the Medi-
terranean Sea.

What were the origins of the urban revolution that transformed Egypt 
into one of the great ancient civilizations? It is not possible to give a de-
finitive answer. All we can do is surmise that the gradual development of 
effective methods of flood control, irrigation, and marsh drainage con-
tributed to a significant increase in agricultural yield. But each of these 
innovations required organization. An irrigation system calls for digging 
canals and constructing reservoirs and dams. Marsh drainage and flood 
control require substantial cooperation among what may have been quite 
scattered settlements. Would it be too fanciful to conjecture that, before 
the emergence of the highly centralized government of pharaonic Egypt, 
a form of ujamaa (self- help communities)3 may have come into existence 
as an institutional backup for these agricultural innovations? This may 
eventually have led to the establishment of administrative centers that 
grew into cities.4

Between 3500 and 3000 BC the separate agricultural communities 
along the banks of the Nile were gradually united, first to form two king-
doms—Upper and Lower Egypt—which were then brought together, in 
about 3100 BC, as a single unit by a legendary figure called Menes, who 
came from Nubia (part of present- day Sudan). Menes was believed to have 
founded a long line of pharaohs, thirty- two dynasties in all, who ruled over 
a stable but relatively isolated society for the next three thousand years. 
With the discovery of the Narmer Palette (dating back to the thirty- first 
century BC), some archaelogists have raised the possibility that Pharaoh 
Narmer predates Menes, which would then cast doubts on the traditional 
accounts. However, there are others who believe that Narmer and Menes 
are in fact the same person. 

It is worth remembering that up to 1350 BC the territory of Egypt cov-
ered not only the Nile Valley but also parts of modern Israel and Syria. 
Control over such a wide expanse of land required an efficient and ex-
tensive administrative system. Censuses had to be taken, taxes collected, 
and large armies maintained. Agricultural requirements included not only 
drainage, irrigation, and flood control but also the parceling out of scarce 
arable land among the peasantry and the construction of silos for storing 
grain and other produce. Herodotus, the Greek historian who lived in the 
fifth century BC, wrote that
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The Beginnings: Egypt 81 

Sesostris [Pharaoh Ramses II, c. 1300 BC] divided the land into lots and 
gave a square piece of equal size, from the produce of which he exacted 
an annual tax. [If] any man’s holding was damaged by the encroach-
ment of the river. . . . The King . . . would send inspectors to measure the 
extent of the loss, in order that he might pay in future a fair proportion 
of the tax at which his property had been assessed. Perhaps this was 
the way in which geometry was invented, and passed afterwards into 
Greece. (Herodotus 1984, p. 169)

He also tells of the obliteration of the boundaries of these divisions by 
the overflowing Nile, regularly requiring the services of surveyors known 
as harpedonaptai (literally “rope stretchers”). Their skills must have im-
pressed the Greeks, for Democritus (c. 410 BC) wrote that “no one sur-
passes me in the construction of lines with proofs, not even the so- called 
rope- stretchers among the Egyptians.” One can only suppose that “lines 
with proofs” in this context refers to constructing lines with the help of a 
ruler and a compass.

There were other pursuits requiring practical arithmetic and mensu-
ration. As the Egyptian civilization matured, there evolved financial and 
commercial practices demanding numerical facility. The construction of 
calendars and the creation of a standard system of weights and measures 
were also products of an evolving numerate culture serviced by a growing 
class of scribes and clerks. And the high point of this practical culture is 
well exemplified in the construction of ancient Egypt’s longest- lasting and 
best- known legacy—the pyramids.

Sources of Egyptian Mathematics

Time has been less kind to Egyptian mathematical sources recorded on 
papyri than to the hard clay tablets from Mesopotamia. The exceptional 
nature of the climate and the topography along the Nile made the Egyp-
tian civilization one of the more agreeable and peaceful of the ancient 
world. In this it contrasted sharply with its Mesopotamian neighbors, who 
not only had a harsher natural environment to contend with but were 
often at the mercy of invaders from surrounding lands. Yet the very dry-
ness of most of Mesopotamia, as well as the unavailability of any natural 
writing material, resulted in the creation of a writing medium that has 
stood the test of time far better than the Egyptian papyrus. However, it 
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must be remembered that papyrus is quite a bit more durable than the 
palm leaves, bark, or bamboo used as writing materials by the ancient 
Chinese and Indians. It is interesting in this context to note that, owing 
to climatic conditions, almost all the papyri that survive are from Egypt 
and, even among these papyri, the ones that are best preserved belong to 
certain favored texts. It would therefore follow that basing one’s impres-
sions of ancient Egypt on these records could result in a skewed image of 
the society of that time.

There are two major sources and a few minor ones on early Egyptian 
mathematics. Most minor sources relate to the mathematics of a later pe-
riod, the Hellenistic (332 BC to 30 BC) or Roman (30 BC to AD 395) pe-
riods of Egyptian history. The most important major source is the Ahmes 
(or Ahmose) Papyrus, named after the scribe who copied it around 1650 
BC from an older document. It is also known as the Rhind Mathemati-
cal Papyrus, after the British collector who acquired it in 1858 and subse-
quently donated it to the British Museum. (Since we know in this instance 
who penned the document, it would be more proper to name it after the 
writer than the collector.) The second major source is the Moscow Papyrus, 
written in about 1850 BC; it was brought to Russia in the middle of the last 
century, finding its way to the Museum of Fine Arts in Moscow. Between 
them, the Ahmes and Moscow papyri contain a collection of 112 prob-
lems with solutions. At the time of the receipt of the Ahmes Papyrus by 
the British Museum in 1864, it was highly brittle with sections missing. A 
fortunate discovery of the missing fragments in the possession of the New 
York Historical Association in 1922 helped to restore it to its original form, 
although the two parts still remain with their separate owners.5 

Other sources include the Egyptian Mathematical Leather Roll, from 
the same period as the Ahmes Papyrus, which is a table text consisting of 
twenty- six decompositions into unit fractions; the Berlin Papyrus, which 
contains two problems involving what we would describe today as simul-
taneous equations, one of second degree; the Reisner Papyri containing ad-
ministrative texts from around 1900 BC, consisting of accounts of building 
construction and carpentry, including a list of workers arranged in groups 
needed for these activities; the Lahun mathematical fragments, formerly 
known as the Kahun Papyrus, also from around 1800 BC, containing six 
scattered mathematical fragments, all of which have now been deciphered;6 
and the Cairo Wooden Boards from the Middle Kingdom period. From 
a later period, there are the two ostraca texts (i.e., texts written on tiles/
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The Beginnings: Egypt 83 

potteries) from the New Kingdom and demotic texts from the Greek and 
Roman periods. The latter consists of one large papyrus, the Cairo Papyrus, 
plus six smaller texts plus several ostraca. 

There is a third group of Egyptian mathematical texts that come from 
the last few centuries of the first millennium BC and the first half of the 
first millennium AD, all of which are written in Greek. A small subsection 
of texts in this group containing six ostraca, one papyrus roll, and three pa-
pyrus fragments are in some way related to Euclid’s Elements. However, the 
majority in this group show little or no sign of having been influenced by 
Greek mathematics. Friberg (2005, p. vii) describes the manuscripts from 
this group as “non- Euclidean” mathematical texts.7 And they constitute 
important evidence, as we shall see later, for tracing possible links between 
Egyptian, Babylonian, and Greek mathematics. 

Ahmes tells us that his material is derived from an earlier document 
belonging to the Middle Kingdom (2025–1773 BC). There is even the 
possibility that this knowledge may ultimately have been derived from 
Imhotep (c. 2650 BC), the legendary architect and physician to Pharaoh 
Zoser of the Third Dynasty. The opening sentence claims that the Papyrus 
contains “rules for enquiring into nature, and for knowing all that exists, 
[every] mystery, . . . every secret.” While an examination of the Ahmes Pa-
pyrus does not bear this out, it remains, with the tables and eighty- seven 
problems and their solutions, the most comprehensive source of early 
Egyptian mathematics, and it was more likely than not a teacher’s man-
ual. The Moscow Papyrus was composed (or copied) by a less competent 
scribe, who remains unknown. It shows little order in the arrangement 
of topics covered, which are not very different from those in the Ahmes 
Papyrus. It contains twenty- five problems, among them two notable re-
sults of Egyptian mathematics: the formula for the volume of a truncated 
square pyramid (or frustum), and a remarkable solution to the problem 
of finding what some interpreters consider to be the curved surface area 
of a hemisphere. Before looking in detail at the mathematics in these and 
other sources, we begin the next section with a discussion of the Egyptian 
system of numeration.

Three types of source materials on Egyptian mathematics can be dis-
tinguished: table texts, problem texts, and administrative texts. These texts 
were the product of a group of scribes, with their clearly defined hierarchy. 
An interesting glimpse into professional rivalry is shown in the Papyrus 
Anatasi from the New Kingdom in which one scribe taunts another:8 
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You come here and [try] to impress me with your official status as “the 
scribe and commander of a work gang.” Your arrogance and boastful 
behavior will be shown up by (how you tackle) the following problem: 
“A ramp, 730 cubits [long] and 55 cubits wide, must be built, with 120 
compartments filled with reeds and beams.9 It should be at a height of 
60 cubits at its peak, 30 cubits in the middle, a slope of 15 cubits with a 
base of 5 cubits. The quantity of bricks required can be obtained from 
the troop commander.” The scribes are all assembled but no one knows 
how to solve the problem. They put their faith in you and say: “You are 
a clever scribe, my friend! Solve [the problem] quickly for your name is 
 famous. . . . Let it not be said: ‘There is something he does not know.’ Give 
us the quantity of bricks required. Behold, its measurements are before 
you; each of its compartments is 30 cubits [long] and 7 cubits [wide].”

It would seem that the problem set deals with four situations that re-
quire different calculations: (1) calculating the number of bricks needed 
to build a ramp; (2) calculating the number of persons needed to move 
an obelisk; (3) calculating the number of persons needed to erect a colos-
sal statue; and (4) calculating the rations of a group of soldiers of a given 
size. It is not known whether the “arrogant” scribe solved the problem. 
However, for a modern reader, the data provided are insufficient to solve 
the problem, and hence a variety of interpretations have been suggested.10

It is clear in this instance that the task set for the scribe was a problem in 
practical mathematics. A number of other problems had little connection 
with real life. The teacher scribes were simply showing their student scribes 
how to apply certain procedures correctly. A scribe was either an instruc-
tor or an accountant. If he was an instructor, he was expected to teach 
“advanced” calculations to his students. If he was an accountant, he had to 
work out labor requirements, food rations, land allocation, grain distribu-
tions, and similar matters for his employers, who were either government 
officials or wealthy private individuals. It is usually an accountant scribe 
who is depicted on wall frescoes walking a few paces behind his master.

Number Recording among the Egyptians

From the beginning of the third millennium BC, there are records of names 
of persons and places as well as those of commodities and their quantities. 
An example of this is a mace head containing a list of tributes received by 
the pharaoh Narmer: 120,000 men, 400,000 oxen, and 1,422,000 goats.11 
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The Beginnings: Egypt 85 

To record such large numbers would require a system of numerals that 
allowed counting to continue almost indefinitely by the introduction of a 
new symbol wherever necessary.

There is an impression, fostered (no doubt inadvertently) by many text-
books on the history of mathematics, that only one scheme of numera-
tion was used in ancient Egypt: the hieroglyphic. This impression is quite 
consistent with a view of Egyptian civilization as stable and unchanging, 
with mathematics primitive yet sufficient to serve the economic and tech-
nological needs of the time. The truth is very different from this view. It 
is possible to distinguish three different notational systems—hieroglyphic 
(pictorial), hieratic (symbolic), and demotic (from the Greek word mean-
ing “popular”)—the first two of which made their appearance quite early in 
Egyptian history. The hieratic notation was employed in both the Ahmes 
and the Moscow papyri. It evolved into a script written with ink and a reed 
pen or other implements on papyrus, ostracon (tile/pottery), leather, or 
wood, changing from what earlier resembled the hieroglyphic script to a 
more cursive and variable style suiting the handwriting of the individual 
scribe. The demotic variant was a popular adaptation of the hieratic nota-
tion and became important during the Greek and Roman periods of Egyp-
tian history.

The hieroglyphic system of writing was a pictorial script in which each 
character represented an object, some easily recognizable. Special symbols 
were used to represent each power of 10 from 1 to 107. Thus a unit was 
commonly written as a single vertical stroke, though when rendered in 
detail it resembled a short piece of rope. The symbol for 10 was in the 
shape of a horseshoe. One hundred was a coil of rope. The pictograph for 
1,000 resembled a lotus flower, though the plant sign formed the initial 
khaa, the beginning of the Egyptian word “to measure.” Ten thousand was 
shaped like a crooked finger which probably had some obscure phonetic or 
allegorical connotation. The stylized tadpole for 100,000 may have been a 
general symbol of large numbers. One million was shown by a figure with 
arms upraised, representing the god Heh supporting the sky. On rare occa-
sions, 10 million was represented by the rising sun and possibly associated 
with Ra, the sun- god, one of the more powerful of the Egyptian deities.12

Thus the earliest Egyptian number system was based on the following 
symbols:

1 10 102 103 104 105 106 107 
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86 Chapter 3

Any reasonably large number can be written using the above symbols ad-
ditively, for example:

12,013 3 1(10) 2(10 ) 1(10 )2 4= + + + = 

No difficulties arose from not having a zero or placeholder in this number 
system. It is of little consequence in what order the hieroglyphs appeared, 
though the practice was generally to arrange them from right to left in de-
scending order of magnitude, as in the example above. While there were 
exceptions regarding the orientation of the number symbols in the case of 
the hieroglyphic numbers, the hieratic was invariably written from right 
to left.

Addition and subtraction posed few problems. In adding two num-
bers, one made a collection of each set of symbols that appeared in both 
numbers, replacing them with the next higher symbol as necessary. Sub-
traction was merely the reversal of the process for addition, with decompo-
sition achieved by replacing a larger hieroglyph with ten of the next- lower 
symbol. 

The absence of zero is a shortcoming of Egyptian numeration that is 
often referred to in histories of mathematics. It is clear that an absence of 
zero as a placeholder is perfectly consistent with a number system such as 
the Egyptian system. However, in two other senses it may be argued, as 
Lumpkin (2002, pp. 161–67) has done, that the concept of zero was present 
in Egyptian mathematics. First, there is zero as a number. Scharff (1922, 
pp. 58–59) contains a monthly balance sheet of the accounts of a traveling 
royal party, dating back to around 1770 BC, which shows the expenditure 
and the income allocated for each type of good in a separate column. The 
balance of zero, recorded in the case of four goods, is shown by the nfr 
symbol that corresponds to the Egyptian word for “good,” “complete,” or 
“beautiful.” It is interesting, in this context, that the concept of zero has a 
positive association in other cultures as well, such as in India (sunya) and 
among the Maya (the shell symbol). 

The same nfr symbol appears in a series of drawings of some Old King-
dom constructions. For example, in the construction of Meidun Pyramid, 
it appears as a ground reference point for integral values of cubits given as 
“above zero” (going up) and “below zero” (going down). There are other 
examples of these number lines at pyramid sites, known and referred to by 
Egyptologists early in the century, including Borchardt, Petrie, and Reiner, 
but not mentioned by historians of mathematics, not even Gillings (1972), 
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The Beginnings: Egypt 87 

who played such an important role in revealing the treasures of Egyptian 
mathematics to a wider public. About fifteen hundred years after Ahmes, 
in a deed from Edfu, there is a use of the “zero concept as a replacement to 
a magnitude in geometry,” according to Boyer (1968, p. 18). Perhaps there 
are other examples waiting to be found in Egypt.

The hieratic representation was similar to the hieroglyphic system in 
that it was additive and based on powers of 10. But it was far more eco-
nomical, as a number of identical hieroglyphs were replaced with fewer 
symbols, or just one symbol. For example, the number 57 was written in 
hieroglyphic notation as

But the same number would be written in hieratic notation as  where 
 and  represent 7 and 50 respectively. It is clear that the idea of a 

ciphered number system, which we discussed in the previous chapter, is 
already present here.

While the hieratic notation was no doubt more taxing on memory, its 
economy, speed, conciseness, and greater suitability for writing with pen 
and ink must have been the main reasons for its fairly early adoption in 
ancient Egypt. For example, to represent the number 999 would take al-
together twenty- seven symbols in hieroglyphics, compared with three 
number signs in hieratic representation! And from the point of view of the 
history of mathematics, the hieratic notation may have inspired, at least 
in its formative stages, the development of the alphabetic Greek number 
system around the middle of the first millennium BC. Over the years the 
hieratic was replaced by an “abnormal hieratic”13 and demotic, while the 
hieroglyphic script remained in use throughout.

From as early as the First Dynasty in the Archaic period (3000–
2686 BC), thin sheets of whitish “paper” were produced from the interior 
of the stem of a reedlike plant that grew in the swamps along the banks of 
the Nile. Fresh stems were cut, the hard outer parts removed, and the soft 
inner pith was laid out and beaten until it formed into sheets, the natural 
juice of the plant acting as the adhesive. Once dried in the sun, the writing 
surface was scraped smooth and gummed into rolls, of which the longest 
known measures over 40 meters. On these rolls the Egyptians wrote with a 
brushlike pen, using for ink either a black substance made from soot or a 
red substance made from ocher.
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Egyptian Arithmetic

The Method of Duplation and Mediation
One of the great merits of the Egyptian method of multiplication or division 
is that it requires prior knowledge of only addition and the 2- times table. A 
few simple examples will illustrate how the Egyptians would have done their 
multiplication and division. Only in the first example will the operation be 
explained in terms of both the hieroglyphic and present- day notation.

Example 3.1 Multiply 17 by 13.

Solution

The scribe had first to decide which of the two numbers was the multi-
plicand—the one he would multiply by the other. Suppose he chose 17. 
He would proceed by successively multiplying 17 by 2 (i.e., continuing 
to double each result) and stopping before he got to a number on the 
left-hand side of the “translated” version below that exceeded the mul-
tiplier, 13( 1 4 8)= + + :

The hieroglyph , resembling a papyrus roll, meant “total.” The num-
bers to be added to obtain the multiplier 13 are arrowed.

If this method is to be used for the multiplication of any two integers, 
the following rule must apply: Every integer can be expressed as the sum of 
integral powers of 2. Thus
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The Beginnings: Egypt 89 

15 2 2 2 2 ;
23 2 2 2 2 .

0 1 2 3

0 1 2 4

= + + +

= + + +

It is not known whether the Egyptians were aware of this general rule, 
though the confidence with which they approached all forms of multipli-
cation by this process suggests that they had an inkling.

This ancient method of multiplication provides the foundation for 
Egyptian calculation. It was widely used, with some modifications, by the 
Greeks and continued well into the Middle Ages in Europe. In a modern 
variation of this method, still popular among rural communities in Rus-
sia, Ethiopia, and the Near East, there are no multiplication tables, and the 
ability to double and halve numbers (and to distinguish odd from even) is 
all that is required.

Example 3.2 Multiply 225 by 17.

Solution

r 225  17

 112 34

 56  68

 28 136

 14 272

r 7  544

r	 3 1,088

r	 1 2,176

17 + 544 + 1,088 + 2,176 = 3,825.

This method, known in the West as the “Russian peasant method,” works 
by expressing the multiplicand, 225, as the sum of integral powers of 2:

225 1 32 64 128 1(2 ) 0(2 ) 0(2 ) 0(2 ) 0(2 ) 1(2 ) 1(2 ) 1(2 ) .0 1 2 3 4 5 6 7= + + + = + + + + + + +

Continued . . .

Inspect the left-hand column for odd numbers 
or “potent” terms (ancient lore in many 
societies imputed “potency” to odd numbers). 
Add the corresponding terms in the right-
hand column to get the answer.
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Continued . . .
Adding the results of multiplying each of these components by 17 gives

(17 2 ) (17 2 ) (17 2 ) (17 2 ) 17 544 1,088 2,176 3,825.0 5 6 7# # # #+ + + = + + + =

In Egyptian arithmetic, the process of division was closely related to 
the method of multiplication. In the Ahmes Papyrus a division x/y is in-
troduced by the words “reckon with y so as to obtain x.” So an Egyptian 
scribe, rather than thinking of “dividing 696 by 29,” would say to himself, 
“Starting with 29, how many times should I add it to itself to get 696?” 
The procedure he would set up to solve this problem would be similar to a 
multiplication exercise:

Example 3.3 Divide 696 by 29.

Solution

 1 29

 2 58

 4 116

 8 r 232

 16 r 464
  

 16 + 8 = 24 232 + 464 = 696

Where a scribe was faced with the problem of not being able to get any 
combination of the numbers in the right- hand column to add up to the 
value of the dividend, fractions had to be introduced. And here the Egyp-
tians faced constraints arising directly from their system of numeration: 
their method of writing numerals did not allow any unambiguous way 
of expressing fractions. But the way they tackled the problem was quite 
ingenious.

The scribe would stop at 16, for 
the next doubling would take 
him past the dividend, 696. Some 
quick mental arithmetic on the 
numbers in the right-hand column 
shows the sum of 232 and 464 
would give the exact value of the 
dividend 696. Taking the sum of 
the corresponding numbers in the 
left-hand column gives the answer 
16 + 8 = 24.
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Egyptian Representation of Fractions
Nowadays, we would write a noninteger number as either a fraction (2/7) 
or a decimal (0.285714). From very early times, the ancient Egyptians (as 
far as we can tell from surviving documents) wrote nonintegers as a sum 
of unit fractions. So that while a number like 1/7 in hieroglyphic nota-
tion consisted of seven vertical lines crowned by the hieroglyphic sign for 
mouth, the number 2/7 was written as a sum of unit fractions or 2/7 = 
1/4 + 1/28. Note that the same unit fraction was not used twice in one rep-
resentation (i.e., 2/7 = 1/7 + 1/7 was not allowed); and there is no known 
explanation for the adoption of this convention. This system of represent-
ing fractions became known as the Egyptian system.

There have been different views as to why Egyptians followed this style 
of fractional representation. A traditional view, widely accepted even to-
day, is that the representation reflected the notational, or conceptual, limi-
tation of their number system. To many of us brought up on fixed-base 
representations of numbers, it is difficult to imagine a situation that fa-
vored the Egyptian usage. One could, of course, contrast the “exactness” 
of the Egyptian representation with the “approximate” nature of fixed-base 
expansions of the neighboring Mesopotamians, whose system is discussed 
in chapter 4. We could marvel at the way that Egyptian scribes performed 
complicated arithmetical operations. They would take 16 + 1/56 + 1/679 
+ 1/776, find 2/3 of it as 10 + 2/3 + 1/84 + 1/1,358 + 1/4,074 + 1/1,164, 
then add 1/2 of it and 1/7 of it and show that it all adds up to 37!

The Egyptian preference for “exactness” has some interesting historical 
parallels with the preference of their students, the Greeks, for geometry 
over symbolic arithmetic. The Egyptian style may have contributed to the 
Pythagorean number mysticism and the number theory that grew out of it. 
For example, the notion of a “perfect number,” which is equal to the sum 
of its proper divisors, would now seem to many as esoteric. But perfect 
numbers have certain practical uses in working with Egyptian fractions. 
And the subject provides, even today, a source of mathematical puzzles 
and problems in abstract number theory.

The puzzle still remains: what practical purpose was served by the 
Egyptian unit fractions? One reason for expanding rational fractions is to 
facilitate easy comparison of different quantities. For example, if you had 
to choose between being paid 1/7 of a bushel of corn or 13/89 of a bushel, 
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92 Chapter 3

which should you take? In terms of the Babylonian arithmetic the two 
quantities could be expressed in base 60 as

,

.

7
1

60
8

60
34

60
17

89
13

60
8

60
45

60
50

2 3

2 3

.

.

+ +

+ +

It is clear from inspection that while the first terms on the right of both 
quantities are identical, the second term of 13/89 is larger than the second 
term of 1/7.

An estimate of the relative magnitude of the two fractions using the 
Egyptian approach is cumbersome. For example, the decomposition of 
13/89 is impossibly complicated, as shown below:

( )

.

8
13

89
1 4 8

89
1

30
1

178
1

267
1

445
1

15
1

89
1

267
2

445
2

15
1

30
1

60
1

178
1

267
1

356
1

445
1

534
1

890
1

267
2

445
2

9 =
+ +

= + + + + + + + +

= + + + + + + + + + +

d dn n

Note that the last two terms in the expansion for 13/89 can be converted to 
unit fractions if we had a 2/n table extending up to n = 445. (The 2/n table 
given in the Ahmes Papyrus and shown in table 3.1 later in this chapter 
provides only odd values of n up to 101). At some point, the quantities 
have to be reduced to expansions that have a common denominator for a 
comparison to be made.

Operations with Unit Fractions
Operating with unit fractions is a singular feature of Egyptian mathemat-
ics and is absent from almost every other mathematical tradition. A sub-
stantial proportion of surviving ancient Egyptian calculations make use 
of such operations—of the eighty- seven problems in the Ahmes Papyrus, 
only six do not. Two reasons may be suggested for this great emphasis on 
fractions. In a society that did not use money, where transactions were car-
ried out in kind, there was a need for accurate calculations with fractions, 
particularly in practical problems such as division of food, parceling out 
land, and mixing different ingredients for beer or bread. We shall see later 
that a number of problems in the Ahmes Papyrus deal with such practical 
concerns.
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The Beginnings: Egypt 93 

A second reason arose from the peculiar character of Egyptian arith-
metic. The process of halving in division often led to fractions. Consider 
how the Egyptians solved the following problem (no. 25) from the Ahmes 
Papyrus.

Example 3.4 Divide 16 by 3.

Solution

 1 → 3

 2  6

 4 → 12

 2/3  2

 1/3 → 1

 1 + 4 + 1/3 = 5 + 1/3  16

As 12 + 3 = 15 falls one short of 16, the Egyptian scribe would proceed 
by working out 2/3 of 1 and then halving the result (i.e., 1/2 # 2/3 = 1/3). 
These steps are shown on the left. Now, 3 + 12 + 1 = 16. The sum of 
the corresponding figures in the left-hand column gives the answer 5 3

1 .

Two important features of Egyptian calculations with fractions are high-
lighted here:

1.  Perverse as it may seem to us today, to calculate a third of a number 
a scribe would first find two- thirds of that number and then halve 
the result. This was standard practice in all Egyptian computations.

2.  Apart from two- thirds (represented by its own hieroglyph, either  
or ), Egyptian mathematics had no compound fractions: all frac-
tions were decomposed into a sum of unit fractions (fractions such 
as 1/4 and 1/5).

To represent a unit fraction, the Egyptians used the symbol , meaning 
“part,” with the denominator underneath. Thus 1/5 and 1/40 would appear 
as  and  respectively.
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94 Chapter 3

The 2/n Table: Its Construction
The dependence on unit fractions in arithmetical operations, together with 
the peculiar system of multiplication, led to a third aspect of Egyptian com-
putation. Every multiplication and division involving unit fractions would 
invariably lead to the problem of how to double unit fractions. Now, dou-
bling a unit fraction with an even denominator is a simple matter of halving 
the denominator. Thus doubling 1/2, 1/4, 1/6, and 1/8 yields 1, 1/2, 1/3, and 
1/4. Doubling 1/3 raised no difficulty, for 2/3 had its own hieroglyphic or 
hieratic symbol. But it was in doubling unit fractions with other odd de-
nominators that difficulties arose. For some reason unknown to us, it was 
not permissible in Egyptian computation to write 2 times 1/n as 1/n + 1/n. 
Thus the need arose for some form of ready reckoner that would provide 
the appropriate unit fractions that summed to 2/n, where n = 5, 7, 9, . . . . 

At the beginning of the Ahmes Papyrus there is a table of decomposi-
tion of 2/n into unit fractions for all odd values of n from 3 to 101. In the 
papyrus, the decomposed unit fractions are marked in red ink. A few of its 
entries are given in table 3.1.

The usefulness of this table for computations cannot be overempha-
sized: it may quite legitimately be compared in importance to the logarith-
mic tables that were used before the advent of electronic calculators. The 
table is interesting for a number of reasons. For one, it does not contain a 
single arithmetical error, in spite of the long and highly involved calcula-
tions that its construction must have entailed; it may be a final corrected 
version of a number of earlier attempts that have not survived.

There is an even more remarkable aspect to this table. With the help of 
a computer, it has been worked out that there are about twenty- eight thou-
sand different combinations of unit fraction sums that can be generated for 
2/n, n = 3, 5, . . . , 101. The constructor of this table arrived at a particular 
subset of fifty unit- fraction expressions, one for each value of n. According 
to Gillings (1972), it is possible to discern certain guidelines for the sets of 
values chosen. There is

1.  a preference for small denominators, and none greater than 900;

2.  a preference for combinations with only a few unit fractions (no ex-
pression contains more than four);

3.  a preference for even numbers as denominators, especially as the 
denominator of the first unit- fraction in each expression, even 
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The Beginnings: Egypt 95 

though they are large or might increase the number of terms in the 
expression. 

To take an example, according to Gillings’s calculations the fraction 2/17 
can be decomposed into unit- fraction summations in just one way if there 
are two unit- fraction terms, 11 ways with three unit- fraction terms, and 
467 ways with four unit- fraction terms. Table 3.1 shows that the construc-
tor opted for one of the three- unit- fraction groups, 2/17 = 1/12 + 1/51 + 
1/68, rather than the solitary two- unit- fraction group, 2/17 = 1/9 + 1/153. 
It would seem that criteria (1) and (3) prevailed in this instance.14

Multiplication and Division with Unit Fractions
The main purpose of constructing the table was to use it for multiplication 
and division. Let us consider one example of each to illustrate its use. First, 
multiplication.

Table 3.1: Some Entries from the Ahmes Papyrus 2/n Table

2/n Unit fractions

2/5 1/3 + 1/15
2/7 1/4 + 1/28
2/9 1/6 + 1/18

2/15 1/10 + 1/30
2/17 1/12 + 1/51 + 1/68
2/19 1/12 + 1/76 + 1/114

2/45 1/30 + 1/90
2/47 1/30 + 1/141 + 1/470
2/49 1/28 + 1/196
2/51 1/34 + 1/102

2/55 1/30 + 1/330
2/57 1/38 + 1/114
2/59 1/36 + 1/236 + 1/531

2/95 1/60 + 1/380 + 1/570
2/97 1/56 + 1/679 + 1/776
2/99 1/66 + 1/198
2/101 1/101 + 1/202 + 1/303 + 1/606
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Example 3.5 

Multiply 1 8
15 by 301

3 (or 1 + 1
3 + 1

5 by 30 + 1
3).

Solution

  1 1 + 1/3 + 1/5

	 r 2 2 + 2/3 + 2/5 = 2 + 2/3 + 1/3 + 1/15

	 r 4 6  + 2/15 = 6 + 1/10 + 1/30

	 r 8 12 + 1/5 + 1/15

	 r 16 24 +  2/5 + 2/15 = 24 + 1/3 + 1/15 + 1/10 + 1/30

  2/3 2/3 + 2/9 + 2/15 = 2/3 + 1/6 + 1/18 + 1/10 + 1/30

	 r 1/3 1/3 + 1/12 + 1/36 + 1/20 + 1/60

2 + 4 + 8 + 16  + 1/3 = 30 + 1/3 46 + 1/5 + 1/10 + 1/12 + 1/15 + 1/30 + 1/36   

The product of the two numbers using modern multiplication would 
be 46 23

45, which is exactly equivalent to the Egyptian result given in the 
last row. In the course of multiplication we have taken the unit frac-
tion terms of 2/5, 2/15, and 2/9 from table 3.1. And because Egyptian 
multiplication was based on doubling, only table 3.1 was required. The 
sheer labor and tedium of this form of multiplication should not make 
us forget how modest is the “tool kit” required. The ability to double, 
halve, and work with the fraction “two-thirds,” together with the 2/n 
table, is sufficient.

To illustrate division with fractions, we take one of the more difficult 
problems of its kind from the Ahmes Papyrus, problem 33, which may be 
restated in modern language as follows.

Example 3.6 The sum of a certain quantity together with its two-
thirds, its half, and its one-seventh becomes 37. What is the quantity? 

Continued . . . 
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The Beginnings: Egypt 97 

Egyptian Division: The Use of “Red Auxiliaries”
The real question remains: How would the Egyptians, working within the 
constraints of their arithmetic, have dealt with the problems raised by 

Continued . . . 

Solution

In the language of modern algebra, this problem is solved by setting up 
an equation of the first degree in one unknown. Let the quantity be x. 
The problem is then to solve

x 371 3
2

2
1

7
1

=+ + +d n

to give

.x 37 1 3
2

2
1

7
1 16 97

2
'= + + + =d n

The problem restated: Divide 37 by (1 + 2/3 + 1/2 + 1/7).

 1 1 + 2/3 + 1/2 + 1/7

 2 4 + 1/3 + 1/4 + 1/28 (2/7 = 1/4 + 1/28 from the 2/n table)

 4 8 + 2/3 + 1/2 + 1/14

 8 18 + 1/3 + 1/7

→ 16 36 + 2/3 + 1/4 + 1/28

At this point in the procedure, two questions arise:

1.  The right-hand side of the last row is close to 37, which is the 
dividend. What must be added to 2/3 + 1/4 + 1/28 to make up 1? 
With our present method, we find the answer, 1/21.

2.  The next question is: By what must the divisor 1 + 2/3 + 1/2 + 
1/7 be multiplied to get 1/21? The answer is 2/97, or in unit frac-
tions 1/56 + 1/679 + 1/776, from table 3.1.

So the solution is

.37 1 3
2

2
1

7
1 16 56

1
679

1
776

1 16 97
2

' + + + = + + + =d n
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98 Chapter 3

questions 1 and 2 in example 3.6? A study of some of the problems in the 
Ahmes Papyrus provides us with the answer. Problems 21 to 23 are com-
monly known as “problems in completion,” since they are expressed as

Complete 2/3 1/15 to 1. (Problem 21) 

Complete 1/4 1/8 1/10 1/35 1/45 to 3. (Problem 23)

These problems are similar to the one in question 1 above, which may also 
be expressed in this way:

Complete 2/3 1/4 1/28 to 1.

The Egyptians adopted a method of solution that is analogous (but not 
equivalent) to the present- day method of least common denominator. First 
they took the denominator of the smallest unit- fraction as a reference num-
ber, and then they multiplied each of the fractions by this number to ob-
tain “red auxiliaries” (so named because the scribe wrote these numbers 
in red ink). They proceeded to calculate by how much the sum of these 
auxiliaries fell short of the reference number. This shortfall quantity was 
then expressed as a fraction of the reference number to obtain the desired 
complement. If the shortfall quantity turned out to be an awkward fraction, 
a further search was made for a reference number that would result in more 
manageable auxiliaries. So, how was question 1 tackled the Egyptian way?

Example 3.7 Complete 2/3 1/4 1/28 to 1. 

Solution

1;

28 .

3
2

4
1

28
1

10 2
1 1 2

1 2 42

(some fraction)+ + + =

+ + + + + =d dn n

The denominator of the smallest fraction, 28, is not a suitable reference 
number given the auxiliaries that result. Instead, 42 is chosen for ease 
of calculation because it is important that the sum of the auxiliaries be-
longing to the divisor in example 3.6 is an integer. Thus 42 is the lowest 
common multiple of the numbers 1, 3, 2, and 7. However, the reference 
number chosen in Egyptian computation was not necessarily the lowest 
common multiple. So what fraction(s) of 42 will give 2? The answer is 1/21.

Continued . . . 
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Continued . . . 

The next step is to find by what fraction the divisor 1 + 2/3 + 1/2 + 
1/7 (from example 3.6) must be multiplied to get 1/21. In other words, 
we have to divide 1/21 by 1 + 2/3 + 1/2 + 1/7:

→ 1   21

→ 2/3   14

→ 1/2  10 + 1/2

→ 1/7   3

 
 1 + 2/3 + 1/2 + 1/7 48 + 1/2

Now, 1 ÷ (48 + 1/2) = 2/97 = 1/56 + 1/679 + 1/776 (obtained from 
the 2/n table).

Hence 37 ÷ (1 + 2/3 + 1/2 + 1/7) = 16 + 1/56 + 1/679 + 1/776.

We have not followed the scribe all the way in his solution to the prob-
lem, for the reason that at one stage his approach requires an addition of 
sixteen unit- fractions, the last six of which are 1/1,164, 1/1,358, 1/1,552, 
1/4,074, 1/4,753, and 1/5,432! We can only assume that the scribe was 
either an incredible calculator or that he had a battery of tables that he 
could consult when called upon to add different combinations of unit frac-
tions. However, the more likely but mundane explanation is that the scribe 
“cheated,” since he knew what the answer should be! The fact remains: the 
Egyptians were inveterate table makers, and the summation table of unit 
fractions contained in the Leather Roll and the decomposition table of 2/n 
in the Ahmes Papyrus are prime examples.15

It is unlikely that the original problem (example 3.6) had any practi-
cal import. In an attempt probably to illustrate, for the benefit of trainee 
scribes, the solution of simple equations of this type, an unfortunate choice 
of numbers led to difficult sets of unit fractions with the attendant cumber-
some operations, which the scribe accomplished without faltering. One is 
again struck by the mental agility of the scribes who could perform such 
feats with a minimum of mathematical tools to call upon. The use of red 
auxiliaries is further evidence of the high level of Egyptian achievement in 
computation, since they enabled any division, however complicated, to be 
performed.
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