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14. Reduced Divisors on Metric Graphs

We now develop the theory of reduced divisors on metric graphs, analogous to the
corresponding theory for discrete graphs. We begin with the definition.

Definition 14.1. Let Γ be a metric graph and v ∈ Γ. A divisor D on Γ is v-reduced
if

(1) D is effective away from v and
(2) every closed connected subset A ⊆ Γ\{v} contains a point x with D(x) <

outdegA(x).

This is reminiscent of the definition for discrete graphs, but with a set of vertices
replaced with a connected closed set. As in the discrete case, we will show that every
divisor on a metric graph is equivalent to a unique v-reduced divisor. In this way, v-
reduced divisors give a natural choice of representatives for divisors classes on metric
graphs. We begin by showing that v-reduced divisors, if they exist, are unique. The
proof is almost verbatim the same as in the discrete case.

Theorem 14.2. If D ∼ D′ are v-reduced, then D = D′.

Proof. By definition, there exists ϕ ∈ PL(Γ) such that D′ −D = div(ϕ). If D 6= D′,
then ϕ is not constant. Let A ⊂ Γ be a connected component of the subset where
ϕ achieves its maximum. Note that A is nonempty because Γ is compact, and it is
not all of Γ because ϕ is not constant. By exchanging D and D′ if necessary, we may
assume that v /∈ A.

Note that ϕ is constant on A and has positive incoming slope along any tangent
vector leaving A. It follows that ordw(ϕ) ≥ outdegA(w) for all w ∈ A. Since D is
effective away from v, we have D(w) ≥ 0 for all w ∈ A. Hence

D′(w) = D(w) + ordw(ϕ) ≥ D(w) + outdegA(w) ≥ outdegA(w)

for all w ∈ A. It follows that D′ is not v-reduced. �

To prove the existence of v-reduced divisors, we first need the following lemma.

Lemma 14.3. Let D ∈ Div(Γ), v ∈ Γ, and let G be a model for Γ with vertex
set containing {v} ∪ supp(D). Then D is v-reduced if and only if the corresponding
divisor D on G is v-reduced.

Proof. It is clear that D is effective away from v if and only if the corresponding
divisor on G is effective away from v.

Now, let A ⊂ Γ r {v} be a closed connected subset such that D(x) ≥ outdegA(x)
for all x ∈ A. Then the boundary of A is contained in the support of D, hence
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A is a union of vertices and edges in the model G. Writing V (A) for the set of
vertices in this set, we see that outdegA(x) ≥ outdegV (A)(x) for all x ∈ V (A), so

D(x) ≥ outdegV (A)(x) for all x ∈ V (A). It follows that the corresponding divisor on
G is not v-reduced.

Now, suppose that the corresponding divisor on G is not v-reduced. Then, run
Dhar’s burning algorithm and let A ⊂ Γ be a connected component of the set of
unburnt points. We then see that D(x) ≥ outdegA(x) for all x ∈ A, so D is not
v-reduced. �

Remark 14.4. Note that Lemma 14.3 does not imply that the v-reduced divisor on
Γ corresponds to the v-reduced divisor on G. In particular, since our choice of model
G depends on the divisor D, replacing D with an equivalent divisor may force us to
change the model.

We prove the existence of a v-reduced divisor equivalent to a given divisor D in two
parts, starting with the case where D is effective. As in the case of discrete graphs,
we produce an iterative procedure that at each step identifies a divisor equivalent
to D that is “closer” to being v-reduced. This proof is a bit more delicate than the
discrete case, because the linear series |D| is infinite, so one must be careful to check
that the procedure terminates.

Theorem 14.5. If D is effective away from v, then D is equivalent to a v-reduced
divisor.

Proof. Let G be a model for Γ with vertex set containing v. Choose an ordering
of V (G) ∪ E(G) such that every edge is adjacent to a vertex that precedes it, and
every vertex other than v is adjacent to an edge that precedes it. This induces a
quasi-order1 on points of Γ, which in turn induces the lexicographic quasi-order on
divisors of Γ.

Now, given D ∈ Div(Γ) effective away from v, we will show that either D is
v-reduced or we can find a divisor equivalent to D that is strictly larger in the lexi-
cographic quasi-order. Since the model G has only finitely many vertices and edges,
there are only finitely many equivalence classes of divisors under the equivalence
induced by the quasi-order, so this process will eventually terminate.

Now, let G′ be the refinement of G obtained by adding supp(D) to the vertex set.
Run Dhar’s burning algorithm on G′ and let A ⊂ Γ be the set of unburnt points.
If A = ∅, then by Lemma 14.3, D is v-reduced. Otherwise, let d be the minimal
distance from A to V (G)\A. Let χ be the rational function that takes the value d on
all points outside a d-neighborhood of A, the value 0 at all points in A, and has slope
1 for a distance of d on the edges emanating from A. Then D + div(χ) is effective
away from v, and is strictly larger in the lexicographic quasi-ordering on divisors. �

To handle the case where D is not effective, we will use the following result.

Corollary 14.6. Any effective divisor of degree at least g+ r on a metric graph Γ of
genus g has rank at least r.

1A quasi-order is a reflexive, transitive binary relation such that, for any v, w, either v ≤ w or
w ≤ v (or possibly both). It is like a total ordering, but distinct elements may have the same order.
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Proof. We prove this by induction on r, the case r = 0 being obvious. Suppose that
r ≥ 1. We first show that every effective divisor D of degree g+r fails to be v-reduced
for v ∈ Γ r supp(D). To see this, let G be a model for Γ with vertex set containing
{v} ∪ supp(D). By Riemann-Roch, the corresponding divisor on G has rank at least
r, hence it is not v-reduced. By Lemma 14.3, it follows that D is not v-reduced.

By Theorem 14.5, if D is an effective divisor of degree g + r, then there exists
a v-reduced divisor Dv equivalent to D, which by the above must contain v in its
support. It follows that, for any point v ∈ Γ, there exists a divisor Dv ∼ D such that
Dv − v is an effective divisor of degree g + r − 1. By induction, r(D − v) ≥ r − 1 for
all v ∈ Γ, and thus r(D) ≥ r. �

We now complete the proof that every divisor on a metric graph is equivalent to a
unique v-reduced divisor. Recall that, in the discrete case, we used the fact that the
Jacobian is finite, and hence every element of the Jacobian is torsion, to complete the
proof. This argument will not work in the case of metric graphs, where the Jacobian
has non-torsion elements.

Lemma 14.7. Every divisor on Γ is equivalent to a divisor that is effective away
from v.

Proof. Let D ∈ Div(Γ). Write D = E − E′, with E and E′ effective. By Corollary
14.6, (g+deg(E′))v has rank at least deg(E′), hence (g+deg(E′))v−E′ is equivalent
to an effective divisor. It follows that

D = E + ((g + deg(E′))v − E′)− (g + deg(E′))v

is equivalent to a divisor that is effective away from v. �

Lemma 14.7 allows us to remove the effective hypothesis from Corollary 14.6.

Corollary 14.8. Every divisor class of degree at least g on a metric graph of genus
g is effective.

Proof. Let D be a divisor of degree at least g on Γ and let v ∈ Γ. By Lemma
14.7, there exists an effective divisor E such that D ∼ E − (deg(E) − deg(D))v.
By Corollary 14.6, the rank of E is at least deg(E) − g ≥ deg(E) − deg(D), hence
E − (deg(E)− deg(D))v is equivalent to an effective divisor. �

Corollary 14.9. Every divisor class of degree at least g + r on a metric graph of
genus g has rank at least r.

Proof. This is an immediate consequence of Corollaries 14.8 and 14.6. �


