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18. Rank Determining Sets

We begin with some definitions.

Definition 18.1. Let D be a divisor on a metric graph Γ. We define the complete
linear series of D to be

|D| := {D′ ∼ D | D′ is effective }.

In this language, a divisor D has rank at least r if, for every effective divisor E of
degree r, the complete linear series |D − E| is nonempty.

Definition 18.2. Let D be a divisor on a metric graph Γ. We define the support of
the complete linear series |D| to be

supp(|D|) := {v ∈ Γ | D′(v) > 0 for some D′ ∈ |D|}.

We say that a divisor D has support in A if supp(D) is contained in A.
On a discrete graph G, the rank of a divisor D can be computed as follows. Choose

a vertex v of G. For each effective divisor E of degree r, run Dhar’s Burning Algorithm
to compute the v-reduced divisor equivalent to D − E. The divisor D has rank at
least r if and only if this v-reduced is effective for all E.

On a metric graph, however, this procedure is impossible to implement because for
r > 0 there are infinitely many effective divisors of degree r. The goal of this lecture
is to show that there exists a finite set of “test” divisors E such that, if |D − E| is
nonempty for all E in this finite set, then the divisor D has rank at least r. This will
make it feasible to compute the ranks of divisors on metric graphs. This idea is made
precise by the notion of rank determining sets.

Definition 18.3. Let Γ be a graph, and let A be a subset of Γ.

(1) The A-rank rA(D) of a divisor D is the largest integer r such that |D − E|
is nonempty for all effective divisors E of degree r with support in A.

(2) The set A is rank determining if rA(D) = r(D) for all D ∈ Div(G).

Remark 18.4. Note that rA(D) ≥ r(D) for any subset A ⊆ Γ and any divisor D.

Definition 18.5. Let A ⊆ Γ be a subset. We define L(A) to be

L(A) =
⋂

supp|D|⊇A

supp|D|.

Proposition 18.6. Let A be a nonempty subset of Γ. The following are equivalent:

(1) L(A) = Γ.
(2) If D is a divisor with rA(D) ≥ 1, then r(D) ≥ 1.
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(3) A is a rank-determining set.

Proof. We first show that (1) and (2) are equivalent. To see this, note that L(A) = Γ if
and only if, for any divisor D with A ⊆ supp|D|, we have supp|D| = Γ. Equivalently,
for any such D, if |D − v| 6= ∅ for all v ∈ A, then |D − v| 6= ∅ for all v ∈ Γ. But this
is the same as saying that rA(D) ≥ 1 implies r(D) ≥ 1.

The implication (3) implies (2) is clear from the definition of rank determining set.
It remains to show that (2) implies (3). Assume (2). By Remark 18.4, it suffices

to show that rA(D) ≥ s implies r(D) ≥ s for all s. We proceed by induction. The
case s = −1 is trivial, since r(D) ≥ −1 for all D. The case s = 0 is also clear, since
rA(D) and r(D) are both nonnegative if and only if D is equivalent to an effective
divisor.

We proceed by induction on s. Suppose s ≥ 1 and rA(D) ≥ s. Then

rA(D − v) ≥ s− 1 for all v ∈ A.

From the induction hypothesis, we deduce that r(D−v) ≥ s−1. Therefore D−E−v
is equivalent to an effective divisor for all effective divisors E of degree s− 1. Fixing
E and varying v, this means that rA(D − E) ≥ 1. Having assumed (2), we deduce
that r(D − E) ≥ 1. Allowing E to vary over all effective divisors of degree s− 1, we
conclude that D − E′ is equivalent to an effective divisor for all effective divisors E′

of degree s, and hence r(D) ≥ s, as required. �

Knowing that A is a rank determining set if and only if L(A) = Γ, we now provide
a topological condition to determine when L(A) = Γ. To do this we define a YL set.

Definition 18.7. Let Γ be a graph and U ⊆ Γ a connected open subset. We call U
a YL set if every connected component X of the complement Γ r U contains a point
v such that outdegX(v) > 1.

Remark 18.8. We have chosen to name YL sets after Ye Luo, whose work these
notes are based upon.

We can characterize YL sets in terms of divisor theory.

Lemma 18.9. Let U ⊆ Γ be a nonempty connected open subset. Then U is a YL set
if and only if D =

∑
v∈∂U v is w-reduced for any w ∈ U .

Proof. This follows immediately by applying Dhar’s burning algorithm, starting with
any vertex w ∈ U . �

Given a divisor D on Γ, we may use Lemma 18.9 to find YL sets that are disjoint
from the support of |D|.

Lemma 18.10. For v ∈ Γ, let D be a v-reduced divisor, and let U be the set of vertices
that can be reached from v by a path that does not pass through supp(D)r {v}. Then
U is a YL set. Moreover, if v /∈ suppD, then U is disjoint from supp|D|.

Proof. Let D′ =
∑

w∈∂U w. Note that D′ ≤ D. Since D is v-reduced, we see that D′

is v-reduced as well. By Lemma 18.9, it follows that U is a YL set. In addition, if
v /∈ supp(D), then by Dhar’s burning algorithm we see that D is w-reduced for all
w ∈ U . It follows that w /∈ supp|D| for all w ∈ U . �
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The following consequence of Lemma 18.10 is not necessary for our other results
on rank-determining sets, but may be of independent interest.

Corollary 18.11. Let D be a divisor on Γ. Then (supp|D|)c is a disjoint union of
YL sets.

Proof. For each v ∈ (supp|D|)c, let Dv be the v-reduced divisor equivalent to D, and
let Uv ⊆ Γ be the set of points that can be reached from v by a path that does not
pass through suppDv. By Lemma 18.10, Uv is a YL set disjoint from supp|D|. It
follows that

(supp|D|)c =
⋃

v∈(supp|D|)c
Uv

is a union of YL sets.
To see that this union is disjoint, suppose that Uv ∩ Uv′ 6= ∅. Then, since Dv is

w-reduced for all w ∈ Uv and Dv′ is w-reduced for all w ∈ Uv′ , we see that Dv = Dv′

by uniqueness of reduced divisors. By the definition of Uv, we therefore see that
Uv = Uv′ . �

Remark 18.12. It is interesting to note that the disjoint union in Corollary 18.11
is a union of only finitely many disjoint YL sets. See Lemma 18.15 below.

We now turn to the main theorem of this lecture, which gives a sufficient condition
for subsets of the vertices to be rank-determining.

Theorem 18.13. Let A ⊆ Γ be a nonempty subset. Then

L(A) ⊇
⋂

Uis YL
A∩U=∅

U c.

Moreover, if all YL sets intersect A, then A is a rank determining set.

Proof. First, suppose that v /∈ L(A). By definition, there exists a divisor D such that
A ⊆ supp|D| and v /∈ supp|D|. By Lemma 18.10, there exists a YL set U containing
v that is disjoint from supp|D|. Thus, v is not contained in the righthand side of the
expression above.

To see the final remark, note that if all YL sets intersect A, then the righthand side
of the expression above is Γ. Thus, in this case we have L(A) = Γ, or equivalently, A
is a rank determining set by Proposition 18.6. �

Remark 18.14. Luo proves the stronger result that the containment of Theo-
rem 18.13 is in fact an equality, from which he derives that this sufficient condition
for subsets to be rank-determining is also necessary. For our purposes, we will only
need the fact that this condition is sufficient.

We note the following interesting property of YL sets.

Lemma 18.15. If Γ is a metric graph of genus g and U is a YL set in Γ, then the
closure U has genus at least 1. As a consequence, a collection of disjoint YL sets in
Γ can contain at most g elements.
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Proof. If U is a tree, then every v ∈ ∂U is a leaf of the tree, because otherwise U
would be disconnected. It follows that, for every v ∈ ∂U , we have indegU (v) = 1,
and thus U is not YL. �

The condition for rank determining sets provided in Theorem 18.13 is useful for
many reasons. An important consequence of this result is that every metric graph
contains a finite rank determining set.

Theorem 18.16. Let Γ be a metric graph of genus g. Then there exists a rank-
determining set of cardinality g + 1.

Proof. Let G be a model for Γ, let T be a spanning tree in G, and let e1, . . . , eg be
the edges of G not in T . Choose a point v0 ∈ T , and a point vi in the interior of ei
for each i. We will show that the set A = {v0, v1, . . . , vg} is a rank determining set.

By Theorem 18.13, it suffices to show that no YL set is contained in the complement
of A. To see this, let U ⊂ ΓrA, and let X be the component of ΓrU containing v0.
We will show that, if v ∈ ∂X, then outdegX(v) = 1. To see this, first suppose that v
is contained in the interior of the edge ei for some i. Since X contains a path from
v0 to v, we see that U cannot contain both endpoints of ei. Since U is connected, it
follows that U ∩ ei is an interval with one endpoint at v. Therefore, outdegX(v) = 1.
On the other hand, if v ∈ T , then for any w ∈ U , there exists a unique path from w
to v. Since U is connected, it follows that outdegX(v) = 1. �

Remark 18.17. For some metric graphs there may exist rank determining sets of
smaller cardinality that g+1. For example any three vertices form a rank determining
set on the complete graph K4, which has genus three.


