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ABSTRACT. The paper is devoted to highlighting several novel aspects of the moduli space of curves
of genus 13, the first genus g where phenomena related to K3 surfaces no longer govern the birational
geometry ofMg . We compute the class of the non-abelian Brill-Noether divisor onM13 of curves that
have a stable rank 2 vector bundle with many sections. This provides the first example of an effective
divisor onMg with slope less than 6 + 10

g
. Earlier work on the Slope Conjecture suggested that such

divisors may not exist. The main geometric application of our result is a proof that the Prym moduli
space R13 is of general type. Among other things, we also prove the Bertram-Feinberg-Mukai and the
Strong Maximal Rank Conjectures onM13.
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1. INTRODUCTION

One of the defining achievements of modern moduli theory is the result of Harris, Mumford and
Eisenbud that Mg is of general type for g ≥ 24 [HM, EH2]. An essential step in their proof is the
calculation of the class of the Brill-Noether divisorMd

g,r consisting of those curves X of genus g such
that Grd(X) 6= ∅ in the case ρ(g, r, d) := g − (r + 1)(g − d + r) = −1. Recall that the slope of an
effective divisor D onMg not containing any of the boundary divisors ∆i in its support is defined
as the quantity s(D) := a/mini bi, where [D] = aλ − b0δ0 − · · · − bb g2 cδb g2 c ∈ CH

1(Mg). Eisenbud

and Harris showed that the slope ofMd

g,r is a
b0

= 6 + 12
g+1 [EH2]. After these seminal results from

the 1980s, the fundamental question arose whether one can construct effective divisors D onMg of
slope s(D) < 6 + 12

g+1 by using conditions defined in terms of higher rank vector bundles on curves.
Each effective divisorD onMg of slope s(D) < 6+ 12

g+1 must contain the locusKg ⊆Mg of curves
lying on a K3 surface [FP]. Since curves on K3 surfaces possess stable rank two vector bundles with
canonical determinant and unexpectedly many sections [Laz, Mu2, Vo], it is then natural to focus on
conditions defined in terms of rank two vector bundles with canonical determinant.

For a smooth curve X of genus g, let SUX(2, ω) be the moduli space of semistable rank 2 vector
bundles E on X with det(E) ∼= ωX . For k ≥ 0, Bertram-Feinberg [BF1, Conjecture, p.2] and Mukai

1



2 G. FARKAS, D. JENSEN, AND S. PAYNE

[Mu2, Problem 4.8] conjectured that for a general curve X the rank 2 Brill-Noether locus

SUX(2, ω, k) :=
{
E ∈ SUX(2, ωX) : h0(X,E) ≥ k

}
has dimension β(2, g, k) := 3g − 3−

(
k+1

2

)
. For a general curve X the Mukai-Petri map

(1) µE : Sym2H0(X,E)→ H0
(
X,Sym2(E)

)
is injective for each E ∈ SUX(2, ω) [T2]. As a consequence, SUX(2, ω, k) has the expected dimension
β(2, g, k), if it is nonempty. There are numerous partial results on the non-emptiness of SUX(2, ω, k)
[LNP, T1, Zh], although still no proof in full generality.

Assume now 3g − 3 =
(
k+1

2

)
. Then generically SUX(2, ω, k) consists of finitely many vector bun-

dles, if it is nonempty. We consider the non-abelian Brill-Noether divisorMPg onMg consisting of
curves [X] for which there exists E ∈ SUX(2, ωX , k) such that the Mukai-Petri map µE is not an
isomorphism. In this paper, we focus on the first genuinely interesting case1

g = 13 and k = 8.

Our first main result proves this case of the Bertram-Feinberg-Mukai Conjecture and computes the
class of the closure of the non-abelian Brill-Noether divisor.

Theorem 1.1. A general curve X of genus 13 carries precisely three stable vector bundles E ∈ SUX(2, ω, 8).
The closure inM13 of the non-abelian Brill-Noether divisor onM13

MP13 :=
{

[X] ∈M13 : ∃E ∈ SUX(2, ω, 8) with µE : Sym2H0(E)
�
→ H0

(
Sym2(E)

)}
has slope equal to

s
(
[MP13]

)
=

4109

610
= 6.735... < 6 +

10

13
= 6.769 . . .

To explain the significance of this result, we recall that several infinite series of examples of divi-
sors onMg for g ≥ 10 with slope less than 6 + 12

g+1 have been constructed in [FP, F, Kh, FJP], using
syzygies on curves. Quite remarkably, the slopes s(D) of all these divisors D onMg satisfy

6 +
10

g
≤ s(D) < 6 +

12

g + 1
.

The slope 6 + 12
g+1 appears as both the slope of the Brill-Noether divisorsMd

g,r, and as the slope of a
Lefschetz pencil of curves of genus g on a K3 surface. Similarly, 6 + 10

g is the slope of the family of
curves {X ′t}t∈P1 in ∆0 ⊆ Mg obtained from a Lefschetz pencil {Xt}t∈P1 of curves of genus g − 1 on
a K3 surface S by identifying two sections corresponding to base points of the pencil. The natural
question has been therefore raised in [CFM, p.2], whether a slight weakening of the Harris-Morrison
Slope Conjecture [HMo] remains true and the inequality

(2) s(D) ≥ 6 +
10

g

holds for every effective divisor D onMg . Results from [FP, Ta] imply that inequality (2) holds for
all g ≤ 12. In particular, the divisorK10 onM10 consisting of curves lying onK3 surfaces, which was
shown in [FP] to be the original counterexample to the Slope Conjecture, satisfies s(K10) = 7 = 6+ 10

g .
OnM12, since a general curve of genus 11 lies on a K3 surface, it follows that the pencils {X ′t}t∈P1
cover the boundary divisor ∆0 ⊆ M12, and consequently the inequality (2) holds. Therefore 13 is
the smallest genus where inequality (2) can be tested, and Theorem 1.1 provides a negative answer
to the question posed in [CFM].

1It is left to the reader to show that in the previous cases k = 5, 6, the corresponding divisorsMP6 andMP8 are supported
on the loci, inM6 andM8 respectively, of curves failing the Petri Theorem.
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1.1. The Kodaira dimension of the Prym moduli space R13. One application of Theorem 1.1 con-
cerns the birational geometry of the moduli space Rg of Prym curves of genus g. The Prym moduli
space Rg classifying pairs [X, η], where X is a smooth curve of genus g and η is a 2-torsion point
in Pic0(X), has been classically used to parametrize moduli of abelian varieties via the Prym map
Rg → Ag−1 [B]. The Deligne-Mumford compactification Rg is uniruled for g ≤ 8 (see [FV] and
references therein), and was previously known to be of general type for g ≥ 14 and g 6= 16 [FL, Br].

Theorem 1.2. The Prym moduli spaceR13 is of general type.

In particular, 13 is the smallest genus g for which it is known thatRg is of general type. The proof of
Theorem 1.2 takes full advantage of Theorem 1.1. It also uses the universal theta divisor Θ13, defined
as the locus of Prym curves [X, η] ∈ R13 for which there exists a vector bundle E ∈ SUX(2, ω, 8) such
that H0(X,E ⊗ η) 6= 0. In an indirect way (to be explained later), we calculate the class [Θ13] of the
closure of Θ13 insideR13 and show that

(3) KR13
∈ Q>0

〈
λ, [Θ13], [D13:2], boundary divisors

〉
,

where D13:2 is the effective divisor on R13 introduced in [FL] consisting of Prym curves [X, η] for
which η can be written as the difference of two effective divisors of degree 6 on X . Since λ is big,
it follows that KR13

is also big. Theorem 1.2 follows, since the singularities of Rg do not impose
adjunction conditions [FL].

1.2. The Strong Maximal Rank Conjecture on M13. The proofs of both Theorems 1.1 and 1.2 are
indirect and proceed through a study of the failure locus of the Strong Maximal Rank Conjecture
[AF] onM13. For a general curve X of genus 13 the Brill-Noether locus W 5

16(X) is 1-dimensional,
and W 6

16(X) = ∅. Counting dimensions shows that the multiplication map

φL : Sym2H0(X,L)→ H0(X,L⊗2)

has at least a one-dimensional kernel, since h0
(
X,L⊗2

)
= 2 deg(L) + 1 − g = 20. The space of

pairs [X,L] such that Ker(φL) is at least 2-dimensional therefore has expected codimension 2 in the
parameter space G5

16 of all such pairs [X,L]. Since the fibres of the map σ : G5
16 →M13 are in general

1-dimensional, the push-forward of this locus is expected to be a divisor onM13.
Our next result verifies this case of the Strong Maximal Rank Conjecture and computes the class

of the closure of the divisorial part of the failure locus. This is essential input for the calculation of
the non-abelian Brill-Noether divisor class in Theorem 1.1 and hence for the proof of Theorem 1.2.

Theorem 1.3. The locus of curves [X] ∈ M13 carrying a line bundle L ∈ W 5
16(X) such that the multipli-

cation map φL : Sym2H0(X,L) → H0(X,L⊗2) is not surjective is a proper subvariety of M13, having a
divisorial part D13, whose closure closure inM13 has slope

s
(
D13

)
=

5059

749
= 6.754 . . . < 6 +

10

13
.

The proof of Theorem 1.3 takes full advantage of the techniques we developed in [FJP] in the course
of our work onM22 andM23. To that end, we split Theorem 1.3 in two parts.

We consider the proper moduli stack σ : G̃5
16 → M̃13, where M̃13 is a suitable moduli stack of tree-

like curves of genus 13 equal to M13 ∪∆0 ∪∆1 in codimension one (see §2 for a precise definition).
We then construct a morphism of two vector bundles over G̃5

16 globalizing the multiplication maps
φL considered before. The degeneracy locus U of this morphism, due to its determinantal nature,
carries a virtual class [U]virt of codimension 2 inside G̃5

16. Set

[D̃13]virt := σ∗
(
[U]virt) ∈ CH1(M̃13).

Theorem 1.4. The following relation for the virtual class [D̃13]virt holds:

[D̃13]virt = 3
(
5059 λ− 749 δ0 − 3929 δ1

)
∈ CH1(M̃13).
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That the degeneracy locus U does not map onto M13 is a particular case of the Strong Maximal
Rank Conjecture of [AF]. We prove this case, along with a stronger result that guarantees that the
virtual class [D̃13]virt is effective, using tropical geometry. In particular, we use the method of tropical
independence on chains of loops, as introduced in [JP1, JP2]. Our construction of the required tropical
independences is similar to the one used in our proof thatM22 andM23 are of general type, with
one important innovation. In [FJP], we were able to ignore certain loops called lingering loops. Here,
this seems impossible; there are too few non-lingering loops. This difficulty shows up already in
the simplest combinatorial case, which we call the vertex avoiding case; for a discussion of how we
resolve this difficulty, see Remarks 4.3 and 4.9.

Theorem 1.5. For a general curve [X] ∈ M13 the map φL : Sym2H0(X,L) → H0(X,L⊗2) is surjective
for all L ∈ W 5

16(X). Furthermore, there is no component of the degeneracy locus U mapping with positive
dimensional fibres onto a divisor in M̃13.

Theorem 1.5 implies that D̃13, defined as the divisorial part of σ(U), represents the class [D̃13]virt.
Together with Theorem 1.4, this completes the proof of Theorem 1.3.

The existence of effective divisors of exceptionally small slope onM13 has direct applications to
the birational geometry of the moduli spaceMg,n of n-pointed stable curves of genus g.

Theorem 1.6. The moduli spaceM13,n is of general type for n ≥ 9.

This improves on Logan’s result that M13,n is of general type for n ≥ 11 [Log]. It is known that
M13,n is uniruled for n ≤ 4; see [AB] and references therein.

1.3. The divisor D13 and rank two Brill-Noether loci. The link between Theorems 1.1 and 1.3 in-
volves a reinterpretation of the divisor D13 in terms of rank 2 Brill-Noether theory. Let SU13(2, ω, 8)
denote the moduli space of pairs [X,E], where [X] ∈ M13 and E ∈ SUX(2, ω, 8). Consider the
forgetful map

ϑ : SU13(2, ω, 8)→M13, [X,E] 7→ [X].

We will show that ϑ is a generically finite map of degree 3 (Theorem 6.5) and that SU13(2, ω, 8) is
unirational (Corollary 6.3). The fact thatM13 possesses a modular cover ϑ of such small degree is
surprising; we do not know of parallels for other moduli spacesMg .

We now fix a pair [X,E] ∈ SU13(2, ω, 8) and consider the determinant map

d :

2∧
H0(X,E)→ H0(X,ωX).

It turns out that for a general [X,E] as above,E is globally generated and the map d is surjective. In
particular, P

(
Ker(d)

)
⊆ P

(∧2
H0(X,E)

) ∼= P27 is a 14-dimensional linear space. Since h0(X,ωX) =

2h0(X,E)− 3, it follows that the set of pairs [X,E] satisfying the condition

(4) P
(
Ker(d)

)
∩G

(
2, H0(X,E)

)
6= ∅

(the intersection being taken inside P
(∧2

H0(X,E)
)
) is expected to be a divisor on SU13(2, ω, 8), and

its image under projection by the generically finite map ϑ is expected to be also a divisor onM13. We
refer to this locus as the resonance divisor Res13, inspired by the algebraic definition of the resonance
variety, see [AFPRW, Definition 2.4] and references therein.

Theorem 1.7. The closure of the resonance divisor inM13

Res13 :=
{

[X] ∈M13 : ∃E ∈ SUX(2, ω, 8) with P
(
Ker(d)

)
∩G

(
2, H0(X,E)

)
6= ∅
}

is an effective divisor inM13. One has the following equality of divisors onM13

Res13 = D13 + 3 · M1

13,7.
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Here, we recall that M1

13,7 is the Hurwitz divisor of heptagonal curves on M13 whose class is
computed in [HM]. The set-theoretic inclusion M1

13,7 ⊆ Res13 is relatively straightforward. The

multiplicity 3 with whichM1

13,7 appears in Res13 is explained by an excess intersection calculation
carried out in §7 and confirms once more that the degree of the map ϑ : SU13(2, ω, 8)→M13 is 3.

We conclude this introduction by explaining the connection between the resonance divisor Res13

and Theorems 1.1 and 1.3. On the one hand, using [FR] the class [R̃es13] of the closure of Res13 in
M̃13 can be computed in terms of the generators of CH1(M̃13) and a tautological class ϑ∗(γ), where
γ is the push-forward of the second Chern class of the (normalized) universal rank 2 vector bundle on
the universal curve over a suitable compactification of SU13(2, ω, 8); see Definition 7.3 for details. On
the other hand, Theorem 1.7 yields an explicit description of R̃es13. By combining this description
with Theorem 1.3, we obtain a second calculation for the class [R̃es13]. In this way, we indirectly
determine the tautological class ϑ∗(γ), see Proposition 7.7. Once the class of [R̃es13] is known, the
calculation of the class of the non-abelian Brill-Noether divisor [M̃P13] (Theorem 1.1) and that of
the universal Theta divisor [Θ̃13] onR13 (Theorems 1.2 and 8.3) follow from Grothendieck-Riemann-
Roch calculations, after checking suitable transversality assumptions.

Acknowledgments: We had interesting discussions with P. Newstead and A. Verra related to this circle of
ideas. Farkas was partially supported by the DFG Grant Syzygien und Moduli and by the ERC Advanced Grant
SYZYGY. Jensen was partially supported by NSF grant DMS–2054135. Payne was partially supported by NSF
grants DMS–2001502 and DMS–2053261. This project has received funding from the European Research Council
(ERC) under the European Union Horizon 2020 research and innovation program (grant agreement No. 834172).

2. THE FAILURE LOCUS OF THE STRONG MAXIMAL RANK CONJECTURE ON M̃13

We denote by Mg the moduli stack of stable curves of genus g ≥ 2 and by Mg the associated
coarse moduli space. We work throughout over an algebraically closed fieldK of characteristic 0 and
the Chow groups that we consider are with rational coefficients. Via the isomorphism CH∗(Mg) ∼=
CH∗(Mg), we routinely identify cycle classes on Mg with their push forward to Mg . Recall that
for g ≥ 3 the group CH1(Mg) is freely generated by the Hodge class λ and by the classes of the
boundary divisors δi = [∆i], for i = 0, . . . , b g2c.

In this section, we realize the virtual divisor class [D̃13]virt as the push forward of the virtual class
of a codimension 2 determinantal locus inside the moduli space G̃5

16 of limit linear series of type g5
16

over an open substack M̃13 of M13, that differs from M13∪∆0∪∆1 outside a subset of codimension 2.
We will use standard terminology from the theory of limit linear series [EH1], and begin by recalling
a few of the basics.

Definition 2.1. Let X be a smooth curve of genus g with ` = (L, V ) ∈ Grd(X) a linear series. The
ramification sequence of ` at a point q ∈ X is denoted

α`(q) : α`0(q) ≤ · · · ≤ α`r(q).

This is obtained from the vanishing sequence a`(q) : a`0(q) < · · · < a`r(q) ≤ d of ` at q, by setting
α`i(q) := a`i(q)−i, for i = 0, . . . , r. The ramification weight of q with respect to ` is wt`(q) :=

∑r
i=0 α

`
i(q).

We define ρ(`, q) := ρ(g, r, d)− wt`(q).

A generalized limit linear series on a tree-like curve X of genus g consists of a collection

` = {(LC , VC) : C is a component of X},

whereLC is a rank 1 torsion free sheaf of degree d onC and VC ⊆ H0(C,LC) is an (r+1)-dimensional
space of sections satisfying compatibility conditions on the vanishing sequences at the nodes of X ,
see [EH2, p. 364]. Let G

r

d(X) be the variety of generalized limit linear series of type grd on X .



6 G. FARKAS, D. JENSEN, AND S. PAYNE

In this section we set

(5) g = 13, r = 5, d = 16.

Although we are mainly interested in the case g = 13, some of the constructions are set up for an
arbitrary genus g, making it easier to refer to results from [FJP].

We denote byM5
13,15 the subvariety ofM13 parametrizing curves X such that W 5

15(X) 6= ∅. As
explained in [FJP, §3], we have codim(M5

13,5,M13) ≥ 2.

Let ∆◦1 ⊆ ∆1 ⊆ Mg be the locus of curves [X ∪y E], where X is a smooth curve of genus g − 1

and [E, y] ∈ M1,1 is an arbitrary elliptic curve. The point of attachment y ∈ X is chosen arbitrarily.
Furthermore, let ∆◦0 ⊆ ∆0 ⊆ Mg be the locus of curves [Xyq := X/y ∼ q] ∈ ∆0, where [X, q] is
a smooth curve of genus g − 1 and y ∈ X is an arbitrary point, together with their degenerations
[X ∪q E∞], where E∞ is a rational nodal curve (that is, E∞ is a nodal elliptic curve and j(E∞) =∞).
Points of this form comprise the intersection ∆◦0 ∩∆◦1. We define the following open subset ofMg :

M◦g :=Mg ∪∆◦0 ∪∆◦1.

Along the lines of [FJP, §3], we introduce an even smaller open subspace ofMg over which the
calculation of [D̃13]virt can be completed. Let T0 ⊂ ∆◦0 be the locus of curves [Xyq := X/y ∼ q] where
either G

r+1

d (X) 6= ∅ or G
r

d−2(X) 6= ∅. Similarly, let T1 ⊆ ∆◦1 be the locus of curves [X ∪y E], where X
is a smooth curve of genus g − 1 such that Gr+1

d (X) 6= ∅ or Grd−2(X) 6= ∅. We set

M̃g :=M◦g \
(
Mr

g,d−1 ∪ T0 ∪ T1

)
.

We define ∆̃0 := M̃g ∩ ∆0 ⊆ ∆◦0 and ∆̃1 := M̃g ∩ ∆1 ⊆ ∆◦1. Note that M̃g and Mg ∪ ∆0 ∪ ∆1

agree away from a set of codimension 2 in each. We identify CH1(M̃g) ∼= Q〈λ, δ0, δ1〉, where λ is the
Hodge class, δ0 := [∆̃0] and δ1 := [∆̃1].

2.1. Stacks of limit linear series. Let G̃rd be the stack of pairs [X, `], where [X] ∈ M̃g and ` is a
(generalized) limit linear series of type grd on the tree-like curveX . We consider the proper projection

σ : G̃rd → M̃g.

Over a curve [X∪yE] ∈ ∆̃1, we identify σ−1([X∪yE]) with the variety of (generalized) limit linear
series ` = (`X , `E) ∈ Grd(X ∪y E). The fibre σ−1([Xyq]) over an irreducible curve [Xyq] ∈ ∆̃0 \ ∆̃1,
is canonically identified with the variety W

r

d(Xyq) of rank 1 torsion free sheaves L on Xyq having
degree d(L) = d and h0(Xyq, L) ≥ r + 1.

Let C̃g → M̃g be the universal curve, and let p2 : C̃g×M̃g
G̃rd → G̃rd be the projection map. We denote

by Z ⊆ C̃g ×M̃g
G̃rd the codimension 2 substack consisting of pairs [Xyq, L, z], where [Xyq] ∈ ∆◦0, the

point z is the node of Xyq and L ∈W r

d(Xyq) \W r
d (Xyq) is a non-locally free torsion free sheaf. Let

ε : Ĉg := BlZ

(
C̃g ×M̃g

G̃rd

)
→ C̃g ×M̃g

G̃rd

be the blow-up of this locus, and we denote the induced universal curve by

℘ := p2 ◦ ε : Ĉg → G̃rd.

The fibre of ℘ over a point [Xyq, L] ∈ ∆̃0, where L ∈ W r

d(Xyq) \W r
d (Xyq), is the semistable curve

X ∪{y,q} R of genus g, where R is a smooth rational curve meeting X transversally at y and q.
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2.2. A degeneracy locus inside G̃5
16. In order to define the degeneracy locus on G̃5

16 whose push-
forward produces [D̃13]virt, we first choose a Poincaré line bundle L over the universal curve Ĉg with
the following properties:

(i) If [X ∪y E] ∈ ∆̃1 and ` = (`X , `E) ∈ Grd(X ∪ E) is a limit linear series, then

L|[X∪yE,`] ∈ Picd(X)× Pic0(E).

(ii) For a point t = [Xyq, L], where [Xyq] ∈ ∆̃0 and L ∈ W r

d(Xyq) \W r
d (Xyq), thus L = ν∗(A) for

some A ∈ W r
d−1(X), we have L|X ∼= A and L|R ∼= OR(1). Here, ℘−1(t) = X ∪ R, whereas

ν : X → Xyq is the normalization map.

We now introduce the following two sheaves over G̃rd
E := ℘∗(L) and F := ℘∗(L⊗2).

Both E and F are locally free; the proof by local analysis in [FJP, Proposition 3.6] goes through
essentially without change.

There is a sheaf morphism over G̃5
16 globalizing the multiplication of sections

(6) φ : Sym2(E)→ F .

We denote by U ⊆ G̃5
16 the locus where φ is not surjective (equivalently, where φ∨ is not injective).

Due to its determinantal nature, U carries a virtual class in the expected codimension 2.

Definition 2.2. We define the virtual divisor class [D̃13]virt := σ∗([U]virt) as

[D̃13]virt := σ∗

(
c2(Sym2(E)∨ −F∨)

)
∈ CH1(M̃13).

If U has pure codimension 2, then D̃13 is a divisor on M̃13 and [D̃13]virt = [D̃13]. The following
corollary provides a local description of the morphism φ.

Corollary 2.3. The morphism φ : Sym2(E)→ F has the following description on fibres:
(i) For [X,L] ∈ G̃rd, with [X] ∈Mg \Mr

g,d−1 smooth, the fibres are

E(X,L) = H0(X,L) and F(X,L) = H0(X,L⊗2),

and φ(X,L) : Sym2H0(X,L)→ H0(X,L⊗2) is the usual multiplication map of global sections.

(ii) Suppose t = (X ∪y E, `X , `E) ∈ σ−1(∆̃1), where X is a curve of genus g − 1, E is an elliptic
curve and `X = |LX | is the X-aspect of the corresponding limit linear series with LX ∈ W r

d (X) such
that h0(X,LX(−2y)) ≥ r. If LX has no base point at y, then

Et = H0(X,LX) ∼= H0
(
X,LX(−2y)

)
⊕K · u and Ft = H0

(
X,L⊗2

X (−2y)
)
⊕K · u2,

where u ∈ H0(X,LX) is any section such that ordy(u) = 0.

If LX has a base point at y, then Et = H0(X,LX) ∼= H0(X,LX(−y)) and the image ofFt → H0(X,L⊗2
X )

is the subspace H0
(
X,L⊗2

X (−2y)
)
⊆ H0(X,L⊗2

X ).

(iii) Let t = [Xyq, L] ∈ σ−1(∆̃0) be a point with q, y ∈ X and let L ∈W r
d (Xyq) be a locally free sheaf of rank

1, such that h0(X, ν∗L(−y − q)) ≥ r, where ν : X → Xyq is the normalization. Then one has the following
description of the fibres:

Et = H0(X, ν∗L) and Ft = H0
(
X, ν∗L⊗2(−y − q)

)
⊕K · u2,

where u ∈ H0(X, ν∗L) is any section not vanishing at both points y and q.

(iv) Let t = [Xyq, ν∗(A)], where A ∈ W r
d−1(X) and set again X ∪{y,q} R to be the fibre ℘−1(t). Then

Et = H0(X ∪R,LX∪R) ∼= H0(X,A) and Ft = H0(X ∪R,L⊗2
X∪R). Furthermore, φ(t) is the multiplication

map on X ∪R.

Proof. The proof is essentially identical to the proof of [FJP, Corollary 3.8]; we omit the details. �
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2.3. Test curves in M̃13. As in [FJP], the calculation of [D̃13]virt is carried out by understanding the
restriction of the morphism φ along the pull backs of the three standard test curves F0, Fell and F1

inside M̃13. Let [X, q] be a general pointed curve of genus g − 1 and fix an elliptic curve [E, y]. We
then define

F0 :=
{
Xyq := X/y ∼ q : y ∈ X

}
⊆ ∆◦0 ⊆M

◦
g and F1 :=

{
X ∪y E : y ∈ X

}
⊆ ∆◦1 ⊆M

◦
g.

Furthermore, we define the curve

(7) Fell :=
{

[X ∪q Et] : t ∈ P1
}
⊆ ∆1 ⊆Mg,

where {[Et, q]}t∈P1 denotes a pencil of plane cubics and q is a fixed point of the pencil. We record the
intersection of these test curves with the generators of CH1(Mg):

F0 · λ = 0, F0 · δ0 = 2− 2g, F0 · δ1 = 1 and F0 · δj = 0 for j = 2, . . . ,
⌊g

2

⌋
,

Fell · λ = 1, Fell · δ0 = 12, Fell · δ1 = −1 and Fell · δj = 0 for j = 2, . . . ,
⌊g

2

⌋
.

Note also that F1 · λ = 0, F1 · δi = 4− 2g, and F1 · δj = 0 for j 6= 1.

We now describe the pull back σ∗(F0) ⊆ G̃5
16. Having fixed a general pointed curve [X, q] ∈M12,1,

we introduce the variety

(8) Y :=
{

(y, L) ∈ X ×W 5
16(X) : h0(X,L(−y − q)) ≥ 5

}
,

together with the projection π1 : Y → X . Arguing in a way similar to [FJP, Proposition 3.10], we
conclude that Y has pure dimension 2, that is, its actual dimension equals its expected dimension as
a degeneracy locus. We consider two curves inside Y , namely

Γ1 :=
{

(y,A(y)) : y ∈ X, A ∈W 5
15(X)

}
and

Γ2 :=
{

(y,A(q)) : y ∈ X, A ∈W 5
15(X)

}
,

intesecting transversely along finitely many points. We then introduce the variety Ỹ obtained from
Y by identifying for each (y,A) ∈ X ×W 5

15(X), the points (y,A(y)) ∈ Γ1 and (y,A(q)) ∈ Γ2. Let
ϑ : Y → Ỹ the projection map.

Proposition 2.4. With notation as above, there is a birational morphism

f : σ∗(F0)→ Ỹ ,

which is an isomorphism outside ϑ(π−1
1 (q)). The restriction of f to f−1

(
ϑ(π−1

1 (q))
)

forgets the aspect of each
limit linear series on the elliptic curve E∞. Furthermore, both E|σ∗(F0) and F|σ∗(F0) are pull backs under f of
vector bundles on Ỹ .

Proof. The proof is identical to the proof of [FJP, Proposition 3.11]. �

We now describe the pull back σ∗(F1) ⊆ G̃5
16 and we define the locus

(9) Z :=
{

(y, L) ∈ X ×W 5
16(X) : h0(X,L(−2y)) ≥ 5

}
.

BecauseX is general, we find thatZ is pure of dimension 2. Next we observe that in order to estimate
the intersection of [D̃13] with the surface σ∗(F1) it suffices to restrict ourselves to Z:

Proposition 2.5. The variety Z is an irreducible component of σ∗(F1) and

c2
(
Sym2(E)∨ −F∨

)
|σ∗(F1)

= c2
(
Sym2(E)∨ −F∨

)
|Z .
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Proof. Let (`X , `E) ∈ σ−1([X ∪y E]) be a limit linear series. Observe that that ρ(13, 5, 16) = 1 ≥
ρ(`X , y) + ρ(`E , y). Since ρ(`E , y) ≥ 0, it follows thats ρ(`X , y) ∈ {0, 1}. If ρ(`E , y) = 0, then `E =
10y+ |OE(6y)| and the aspect `X ∈ G5

16(X) is a complete linear series with a cusp at the point y ∈ X .
Therefore (y, `X) ∈ Z, and in particular Z×{`E} ∼= Z is a union of irreducible components of σ∗(F1).

The remaining components of σ∗(F1) are indexed by Schubert indices

α :=
(
0 ≤ α0 ≤ . . . ≤ α5 ≤ 11 = 16− 5

)
,

such that α ≥ (0, 1, 1, 1, 1, 1) holds lexicographically, and α0 + · · ·+α5 ∈ {6, 7}, for ρ(`X , y) ≥ −1, for
any point y ∈ X , see also [F, Theorem 0.1]. For a Schubert index α satisfying these conditions, we let
αc := (11− α5, . . . , 11− α0) be the complementary Schubert index, and define

Zα :=
{

(y, `X) ∈ X ×G5
16(X) : α`X (y) ≥ α

}
and Wα :=

{
`E ∈ G5

16(E) : α`E (y) ≥ αc
}
.

Then the following relation holds for certain natural coefficients mα:

σ∗(F1) = Z +
∑

α≥(0,1,1,1,1,1)

mα

(
Zα ×Wα

)
.

We now finish the proof by invoking the pointed Brill-Noether Theorem [EH2, Theorem 1.1], which
gives dim Zα = 1 + ρ(12, 5, 16)− (α0 + · · ·+ α5) ≤ 1. In the definition of the test curve F1, the point
of attachment y ∈ E is fixed, therefore the restrictions of both E and F are pulled-back from Zα and
one obtains c2

(
Sym2(E)∨ −F∨

)
|Zα×Wα

= 0 for dimension reasons. �

2.4. Top Chern numbers on Jacobians. We use various facts about intersection theory on Jacobians,
for which we refer to [ACGH, Chapters VII–VIII]. We start with a general curve X of genus g, fix a
Poincaré line bundle P on X × Picd(X) and denote by

π1 : X × Picd(X)→ X and π2 : X × Picd(X)→ Picd(X)

the two projections. Let η = π∗1([x0]) ∈ H2(X×Picd(X),Z), where x0 ∈ X is a fixed point. We choose
a symplectic basis δ1, . . . , δ2g ∈ H1(X,Z) ∼= H1(Picd(X),Z), and then consider the class

γ := −
g∑

α=1

(
π∗1(δα)π∗2(δg+α)− π∗1(δg+α)π∗2(δα)

)
∈ H2(X × Picd(X),Z).

One has c1(P) = d · η + γ, and the relations γ3 = 0, γη = 0, η2 = 0, and γ2 = −2ηπ∗2(θ), for
which we refer to [ACGH, page 335]. Assuming W r+1

d (X) = ∅ (which is what happens in the case
g = 12, r = 5, d = 16 relevant to us), the smooth variety W r

d (X) admits a rank r + 1 vector bundle

M := (π2)∗

(
P|X×W r

d (X)

)
with fibresML

∼= H0(X,L), for L ∈W r
d (X). The Chern numbers ofM are computed via the Harris-

Tu formula [HT]. We write formally
r∑
i=0

ci(M∨) = (1 + x1) · · · (1 + xr+1).

For a class ζ ∈ H∗
(
Picd(X),Z

)
, the Chern number cj1(M) · · · cjs(M) · ζ ∈ Htop(W r

d (X),Z) can be
computed by using repeatedly the following formal identities2:

(10) xi11 · · ·x
ir+1

r+1 · θρ(g,r,d)−i1−···−ir+1 = g!

∏
j>k(ik − ij + j − k)∏r+1

k=1(g − d+ 2r + ik − k)!
.

2See [FJP, § 4.1] for a detailed discussion of how to read and apply the Harris-Tu formula in this context.
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We now specialize to the case when X is a general curve of genus 12, thus W 5
16(X) is a smooth 6-

fold. By Grauert’s Theorem, N := (R1π2)∗

(
P|X×W 5

16(X)

)
is locally free of rank one. Set y1 := c1(N ).

We now explain how y1 determine the Chern numbers ofM.

Proposition 2.6. For a general curve X of genus 12 set ci := ci(M∨), for i = 1, . . . , 6, and y1 := c1(N ).
Then the following relations hold in H∗(W 5

16(X),Z):

ci =
θi

i!
− θi−1

(i− 1)!
y1, for i = 1, . . . , 6.

Proof. For an effective divisor D of sufficiently large degree on X , there is an exact sequence

0→M→ (π2)∗

(
P ⊗O(π∗D)

)
→ (π2)∗

(
P ⊗O(π∗1D)|π∗1D

)
→ R1π2∗

(
P|X×W 5

16(X)

)
→ 0.

Recall thatN is the vector bundle on the right in the exact sequence above. By [ACGH, Chapter VII],
we have ctot

(
(π2)∗(P ⊗ O(π∗1D))

)
= e−θ, and the total Chern class of (π2)∗

(
P ⊗ O(π∗1D)|π∗1D

)
is

trivial. We therefore obtain the formula

(1 + y1) · e−θ = 1− c1 + c2 − · · ·+ c6,

as claimed. �

Using Proposition 2.6, any Chern number onW 5
16(X) can be expressed in terms of monomials in y1

and θ. The following identity on H12(W 5
16(X),Z) follows from (10) using the canonical isomorphism

H1(X,L) ∼= H0
(
X,ωX ⊗ L∨

)∨.

(11)
(
θi · y6−i

1

)
W 5

16(X)
=

θ12

(12− i)!
= i!

(
12

i

)
.

With this preparation in place, we now compute the classes of the loci Y and Z.

Proposition 2.7. Let [X, q] be a general pointed curve of genus 12, letM denote the tautological rank 6 vector
bundle over W 5

16(X), and set ci = ci(M∨) ∈ H2i(W 5
16(X),Z) as before. The following formulas hold:

(i) [Z] = π∗2(c5)− 6ηθπ∗2(c3) + (54η + 2γ)π∗2(c4) ∈ H10
(
X ×W 5

16(X),Z
)
.

(ii) [Y ] = π∗2(c5)− 2ηθπ∗2(c3) + (15η + γ)π∗2(c4) ∈ H10
(
X ×W 5

16(X),Z
)
.

Proof. The locus Z has been defined by (9) as the degeneracy locus of a vector bundle morphism
over the 7-dimensional smooth variety X × W 5

16(X) (observe again that W 6
16(X) = ∅). For each

(y, L) ∈ X ×W 5
16(X), there is a natural map

H0(X,L⊗O2y)∨ → H0(X,L)∨.

These maps viewed together induce a morphism ζ : J1(P)∨ → π∗2(M)∨ of vector bundles. Then Z is
the first degeneracy locus of ζ and applying the Porteous formula,

[Z] = c5

(
π∗2(M)∨ − J1(P)∨

)
.

The Chern classes of the jet bundle J1(P) are computed using the standard exact sequence

0 −→ π∗1(ωX)⊗ P −→ J1(P) −→ P −→ 0.

We compute the total Chern class of the formal inverse of the jet bundle as follows:

ctot

(
J1(P)∨

)−1
=
(∑
j≥0

(d(L)η + γ)j
)
·
(∑
j≥0

(
(2g(X)− 2 + d(L))η + γ

)j)
,

=
(
1 + 16η + γ + γ2 + · · ·

)
·
(
1 + 38η + γ + γ2 + · · ·

)
,

= 1 + 54η + 2γ − 6ηθ.

Multiplying this with the total class of π∗2(M)∨, one finds the claimed formula for [Z].
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To compute the class of Y defined in (8), we consider the projections

µ, ν : X ×X × Pic16(X)→ X × Pic16(X),

and let ∆ ⊆ X × X × Pic16(X) be the diagonal. Set Γq := {q} × Pic16(X) and consider the vector
bundle B := µ∗

(
ν∗(P) ⊗ O∆+ν∗(Γq)

)
. There is a morphism χ : B∨ → (π2)∗(M)∨ of vector bundles

over X × W 5
16(X) obtained as the dual of the evaluation map and the surface Y is realized as its

degeneracy locus. Since we also have that

ctot(B∨)−1 =
(

1 + (d(L)η + γ) + (d(L)η + γ)2 + · · ·
)
·
(
1− η

)
= 1 + 15η + γ − 2ηθ,

we find the stated expression for [Y ] and finish the proof. �

We introduce two further vector bundles which appear in many of our calculation. Their Chern
classes are computed via Grothendieck-Riemann-Roch.

Proposition 2.8. Let [X, q] be a general pointed curve of genus 12 and consider the vector bundles A2 and
B2 on X × Pic16(X) having fibres

A2,(y,L) = H0
(
X,L⊗2(−2y)

)
and B2,(y,L) = H0

(
X,L⊗2(−y − q)

)
,

respectively. One then has the following formulas for their Chern classes:

c1(A2) = −4θ − 4γ − 86η, c1(B2) = −4θ − 2γ − 31η,

c2(A2) = 8θ2 + 320ηθ + 16γθ, c2(B2) = 8θ2 + 116ηθ + 8θγ.

Proof. We apply Grothendieck-Riemann-Roch to the projection map

ν : X ×X × Pic16(X)→ X × Pic16(X).

Via Grauert’s Theorem, A2 can be realized as a push forward under the map ν, precisely

A2 = ν!

(
µ∗
(
P⊗2 ⊗OX×X×Pic16(X)(−2∆)

))
= ν∗

(
µ∗
(
P⊗2 ⊗OX×X×Pic16(X)(−2∆)

))
.

Applying Grothendieck-Riemann-Roch to ν, we find ch2(A2) = 8ηθ, and ν∗(c1(P)2) = −2θ. One
then obtains c1(A2) = −4θ − 4γ − (4d(L) + 2g(C) − 2)η, which yields the formula for c2(A2). To
determine the Chern classes of B2, we observe c1(B2) = −4θ− 2γ− (2d− 1)η and ch2(B2) = 4ηθ. �

3. THE CLASS OF THE VIRTUAL DIVISOR D̃13

In this section we determine the virtual class [D̃13]virt := σ∗

(
c2(Sym2(E))∨ − F∨

)
on M13. We

begin by recording the following formulas for a vector bundle V of rank r + 1 on a stack X :

c1
(
Sym2(V)

)
= (r + 2)c1(V), c2

(
Sym2(V)

)
=
r(r + 3)

2
c21(V) + (r + 3)c2(V).

We apply these formulas for the first degeneracy locus of φ∨ : F∨ → Sym2(E)∨. By Definition 2.2,
its class [U]virt is given by

c2
(
Sym2(E)∨ −F∨

)
= c2

(
Sym2(E)∨

)
− c1

(
Sym2(E)∨) · c1(F∨) + c21(F∨)− c2(F∨),(12)

= 20c21(E) + 8c2(E)− 7c1(E) · c1(F) + c21(F)− c2(F).

In what follows we expand the virtual class in CH1(M̃13) as

(13) [D̃13]virt = aλ− b0δ0 − b1δ1.

We compute the coefficients a, b0 and b1, by intersecting both sides of this expression with the test
curves F0, F1 and Fell. We start with the coefficient b1.
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Theorem 3.1. Let X be a general curve of genus 12. The coefficient b1 in (13) is:

b1 =
1

2g(X)− 2
σ∗(F1) · c2

(
Sym2(E)∨ −F∨

)
= 11787.

Proof. We intersect the degeneracy locus of the map φ : Sym2(E) → F with σ∗(F1). By Proposition
2.5, it suffices to estimate the contribution coming from Z. We write

σ∗(F1) · c2
(
Sym2(E)∨ −F∨

)
= c2

(
Sym2(E)∨ −F∨

)
|Z .

In Proposition 2.7, we constructed a morphism ζ : J1(P)∨ → π∗2(M)∨ of vector bundles on Z,
whose fibres are the maps H0(O2y)∨ → H0(X,L)∨. The kernel sheaf Ker(ζ) is locally free of rank 1.
If U is the line bundle on Z with fibre

U(y, L) =
H0(X,L)

H0(X,L(−2y))
↪→ H0(X,L⊗O2y)

over a point (y, L) ∈ Z, then one has the following exact sequence over Z:

0 −→ U −→ J1(P) −→
(
Ker(ζ)

)∨ −→ 0.

In particular, by Proposition 2.7, we find that

(14) c1(U) = 2γ + 54η + c1(Ker(ζ)).

The product of the Chern class of Ker(ζ) with any class ξ ∈ H2(X ×W 5
16(X),Z) is given by the

Harris-Tu formula [HT]:

c1
(
Ker(ζ)

)
· ξ|Z = −c6

(
π∗2(M)∨ − J1(P)∨

)
· ξ|Z ,(15)

= −
(
π∗2(c6)− 6ηθπ∗2(c4) + (54η + 2γ)π∗2(c5)

)
· ξ|Z .

Similarly, one has the formula [HT] for the self-intersection on the surface Z:

(16) c21
(
Ker(ζ)

)
=
(
π∗2(c7)− 6ηθπ∗2(c5) + (54η + 2γ)π∗2(c6)

)
∈ H14

(
X ×W 5

16(X),Z
) ∼= Z.

We also observe that c7 = 0, since the bundleM has rank 6.
Let A3 denote the vector bundle on Z having fibres

A3,(y,L) = H0(X,L⊗2)

constructed as a push forward of a line bundle on X ×X × Pic16(X). Then the line bundle U⊗2 can
be embedded in A3/A2. We consider the quotient

G :=
A3/A2

U⊗2
.

The morphism U⊗2 → A3/A2 vanishes along the locus of pairs (y, L) where L has a base point.
It follows that the sheaf G has torsion along the locus Γ ⊆ Z consisting of pairs (q,A(q)), where
A ∈ W 5

16(X). Furthermore, F|Z , as a subsheaf of A3, can be identified with the kernel of the map
A3 → G. Summarizing, there is an exact sequence of vector bundles on Z

(17) 0 −→ A2|Z −→ F|Z −→ U⊗2 −→ 0.

Over a general point (y, L) ∈ Z, this sequence reflects the decomposition

F(y, L) = H0(X,L⊗2(−2y))⊕K · u2,

where u ∈ H0(X,L) is a section such that ordy(u) = 1.

Via the exact sequence (17), one computes the Chern classes of F|Z :

c1(F|Z) = c1(A2|Z) + 2c1(U), c2(F|Z) = c2(A2|Z) + 2c1(A2|Z)c1(U).
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Recalling that E|Z = π∗2(M)|Z and using (12), we find that σ∗(F1) · c2
(
(Sym2E)∨ −F∨

)
is equal to:

20c21
(
π∗2M∨|Z

)
+ 8c2

(
π∗2M∨|Z

)
+ 7c1

(
π∗1M∨|Z

)
· c1
(
A2|Z

)
+ 4c21(U)−

− c2(A2|Z) + 14c1
(
π∗2M∨|Z

)
· c1(U) + c21(A2|Z) + 2c21(A2|Z) · c1(U).

Here, ci(π∗2M∨|Z) = π∗2(ci) ∈ H2i(Z,Z). The Chern classes of A2|Z have been computed in Propo-
sition 2.8. Formula (14) expresses c1(U) in terms of c1((Ker(ζ)) and the classes η and γ. When
expanding σ∗(F1) · c2

(
Sym2(E)∨ − F∨

)
, one distinguishes between terms that do and those that do

not contain the first Chern class of Ker(ζ). The coefficient of c1
(
Ker(ζ)

)
, as well as the contribution

coming from c21
(
Ker(ζ)

)
in the expression of σ∗(F1) · c2

(
Sym2(E)∨ − F∨

)
is evaluated using the for-

mulas (15) and (16) respectively. To carry this out, we first consider the part of this product that does
not contain c1

(
Ker(ζ)

)
, and we obtain

8π∗2(c2) + 20π∗2(c21) + c21(A2|Z) + 7π∗2(c1) · c1(A2|Z)− c2(A2|Z) + 4(2γ + 54η)2+

+ 2(2γ + 54η) · c1(A2|Z) + 14(2γ + 54η) · π∗2(c1) =

20π∗2(c21) + 154π∗2(c1) · η − 28π∗2(c1) · θ − 96ηθ + 8θ2 + 8π∗2(c2) ∈ H4
(
X ×W 5

16(X),Z
)
.

This polynomial gets multiplied by the class [Z], which is expressed in Proposition 2.7 as a degree
5 polynomial in θ, η and π∗2(ci). We obtain a homogeneous polynomial of degree 7 viewed as an
element of H14

(
X ×W 5

16(X),Z
)
.

Next we turn our attention to the contribution σ∗(F1) ·c2
(
Sym2(E)∨−F∨

)
coming from terms that

do contain c1
(
Ker(ζ)

)
. This is given by the following formula:

4c21(Ker(ζ) + c1(Ker(ζ) ·
(

8(2γ + 54η) + 2c1(A2|Z) + 14π∗2(c1)
)
.

Using (15) and (16), one ends up with the following homogeneous polynomial of degree 7 in η, θ,
and π∗2(ci) for i = 1, . . . , 6:

84π∗2(c1c4)θη − 48π∗2(c4)θ2η − 756π∗2(c1c5)η + 440π∗2(c5)θη − 44π∗2(c6)η.

Adding together the parts that do and those that do not contain c1
(
Ker(ζ)

)
, and using the fact that

the only monomials that need to be retained are those containing η, after manipulations carried out
using Maple, one finds

σ∗(F1) · c2
(
Sym2(E)∨ −F∨

)
= ηπ∗2

(
−602c1c5 + 432c2c4 − 120c21c3θ + 168c1c3θ

2−

− 48c3θ
3 + 1080c21c4 − 1428c1c4θ − 48c2c3θ + 384c4θ

2 + 344c5θ − 44c6

)
.

We suppress η and the remaining polynomial lives inside H12(W 5
16(X),Z) ∼= Z. Using (2.6) this

expression is equal to

σ∗(F1) · c2
(
Sym2(E)∨ −F∨

)
=

193

45
θ6 − 1271

30
θ5y1 +

1607

12
θ4y2

1 − 120θ3y
3
1 = 259314,

where for the last step we used the formulas (11). We conclude

b1 =
1

22
σ∗(F1) · c2

(
Sym2(E)∨ −F∨

)
= 11787,

as required. �

Theorem 3.2. Let [X, q] be a general pointed curve of genus 12 and let F0 ⊆ ∆̃0 ⊆ M̃13 be the associated
test curve. Then the coefficient of δ0 in the expression (13) of [D̃13]virt is equal to

b0 =
σ∗(F0) · c2

(
Sym2(E)∨ −F∨

)
+ b1

24
= 2247.
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Proof. Using Proposition 2.4, we observe that

c2
(
Sym2(E)∨ −F∨

)
|σ∗(F0)

= c2
(
Sym2(E)∨ −F∨

)
|Y .

We shall evaluate the Chern classes of F|Y via the line bundle V on Y with fibre

V (y, L) =
H0(X,L)

H0(X,L(−y − q))
↪→ H0(X,L⊗Oy+q)

over a point (y, L) ∈ Y . We write the following exact sequence over Y

0 −→ V −→ B −→
(
Ker(χ)

)∨ −→ 0,

where the morphism χ : B∨ → π∗2(M)∨ was defined in the final part of the proof of Proposition 2.7.
In particular, we have

c1(V ) = 15η + γ + c1
(
Ker(χ)

)
.

The effect on multiplying c1
(
Ker(χ)

)
against a class ξ ∈ H2

(
X × W 5

16(X),Z
)

is described by
applying once more the Harris-Tu [HT] formula:

(18) c1
(
Ker(χ)

)
· ξ|Y =

(
−π∗2(c6)− 2ηθπ∗2(c4) + (15η + γ)π∗2(c5)

)
· ξ|Y ,

where we recall that π2 : X ×W 5
16(X) → W 5

16(X) and ci ∈ H2i(W 5
16(X),Z). Similarly, for the self-

intersection on Y the following formula holds:

(19) c21
(
Ker(χ)

)
= −2ηθπ∗2(c5) + (15η + γ)π∗2(c6) ∈ H14

(
X ×W 5

16(X),Z
)
.

We have also introduced in Proposition 2.8 the vector bundle B2 on X × Pic16(X) with fibres
B2,(y,L) = H0(X,L⊗2(−y − q)) over a point (y, L). A local calculation along the lines of the one in
the proof of Theorem 3.1 shows that one also has an exact sequence on Y , which can then be used to
determine the Chern numbers of F|Y .

0 −→ B2|Y −→ F|Y −→ V ⊗2 −→ 0.

This exact sequence reflects the fact for a general point (y, L) ∈ Y one has a decomposition F(y, L) =
H0(X,L⊗2(−y − q)) ⊕ K · u2, where u ∈ H0(X,L) is a section not vanishing at y and q. We thus
obtain the formulas:

c1(F|Y ) = c1(B2|Z) + 2c1(V ), c2(F|Y ) = c2(B2|Y ) + 2c1(B2|Y )c1(V ).

To estimate c2
(
Sym2(E)∨ −F∨

)
|Y we use (12) and write:

σ∗(F0) · c2
(
(Sym2E)∨ −F∨

)
= 20c21

(
π∗1M∨|Y

)
+ 8c2

(
π∗2M∨|Y

)
+ 7c1

(
π∗1M∨|Y

)
· c1
(
B2|Y

)
+ 4c21(V )− c2(B2|Y ) + 14c1

(
π∗2M∨|Y

)
· c1(V ) + c21(B2|Y ) + 2c1(B2|Y ) · c1(V ).

We expand this expression, collect the terms that do not contain c1
(
Ker(χ)

)
, and obtain the fol-

lowing:

20π∗2(c21)− 7ηπ∗2(c1)− 28θ · π∗2(c1) + 4θη + 8θ2 + 8π∗2(c2).

This quadratic polynomial gets multiplied with the class [Y ] computed in Proposition 2.7. Next, we
collect the terms in σ∗(F0) · c2

(
Sym2E∨ −F∨

)
that do contain c1

(
Ker(χ)

)
:

4c21
(
Ker(χ)

)
+ c1

(
Ker(χ)

)(
8(15η + γ) + 14π∗2(c1) + 2c1(B2|Y

)
.

This part of the contribution is evaluated using formulas (18) and (19).

Putting everything together, we obtain a polynomial in H14
(
X ×W 5

16(X),Z
) ∼= Z, as in the proof

of Theorem 3.1:

σ∗(F0) · c2
(
Sym2(E)∨ −F∨

)
= ηπ∗2

(
−40c21c3θ + 56c1c3θ

2 − 16c3θ
3 + 300c21c4 − 392c1c4θ−
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−16c2c3θ + 104c4θ
2 − 217c1c5 + 120c2c4 + 124c5θ + 2c6

)
.

Applying (2.6) and then (11), after eliminating η, we obtain

σ∗(F0) · c2
(
Sym2(E)∨ −F∨

)
=

161

180
θ6 − 28

3
θ5y1 +

755

24
θ4y2

1 − 30θ3y3
1 = 42141.

�

We can now complete the calculation of [D̃13]virt.

Proof of Theorem 1.4. We consider the curve Fell ⊆ M̃g defined in (7) obtained by attaching at the
fixed point of a general curve X of genus 12 a pencil of plane cubics at one of the base points of the
pencil. Then one has the relation

a− 12b0 + b1 = Fell · σ∗c2
(
Sym2(E)∨ −F∨

)
= 0.

Using Theorems 3.1 and 3.2, we thus find a = 15177, for the λ-coefficient in the expansion (13). This
completes the calculation of the virtual class [D̃13]virt. �

We finally explain how Theorem 1.4 and Theorem 1.5 (proved in §4) together imply Theorem 1.3.

Proof of Theorem 1.3. We write [D13] = aλ − b0δ0 − · · · − b6δ6, where a, b0 and b1 are determined by
Theorem 1.4. Applying [FP, Theorem 1.1] we have the inequalities bi ≥ (6i+ 8)b0 − (i+ 1)a ≥ b0 for
i = 2, . . . , 6, which shows that s(D13) = a

b0
= 5059

749 . �

4. THE STRONG MAXIMAL RANK CONJECTURE IN GENUS 13

In this section and the next, we prove that D̃13 is not all of M̃13 and that its condimension 1 part
represents the virtual class [D̃13]virt.

To show that D̃13 is not all of M̃13, it suffices to prove the existence of one Brill-Noether general
smooth curve X of genus 13 such that, for every L ∈W 5

16(X), the multiplication map

φL : Sym2H0(X,L)→ H0(X,L⊗2)

is surjective. This is one case of the Strong Maximal Rank Conjecture [AF]. The locus of such curves
is Zariski open; to prove that it is nonempty over every algebraically closed field of characteristic
zero, it suffices to show this over one such field. Hence, we can and do assume that our ground field
K is spherically complete with respect to a surjective valuation ν : K× → R, and that K has residue
characteristic zero. This allows us to discuss the nonarchimedean analytifications of curves, the
skeletons of those analytifications, and the tropicalizations of rational functions, viewed as sections
of L and L⊗2. In this framework, we apply the method of tropical independence to give a lower
bound for the rank of the multiplication map φL, for everyL ∈W 5

16(X). The motivation and technical
foundations for this approach are detailed in §§1.4-1.5, §§2.4-2.5, and §6 of [FJP], to which we refer
the reader for details and further references.

After proving this case of the Strong Maximal Rank Conjecture, we will furthermore show that no
component of the degeneracy locus U in the parameter space G̃5

16 over M̃13 maps with generically
positive dimensional fibres onto a divisor in M̃13. As in [FJP], this additional step is necessary
to show that the push-forward of the virtual class is effective, and our proof involves analogous
arguments on lower genus curves for linear series with ramification. In particular, we will consider
linear series with ramification on curves of genus 11 and 12 in the next section, and so we set up our
arguments here to work in this greater generality.

Let X be a smooth projective curve of genus 11 ≤ g ≤ 13 over K whose Berkovich analytification
Xan has a skeleton Γ which is a chain of g loops connected by bridges, as shown. In order to simplify
notation later, the vertices of Γ are labeled w13−g, . . . , w13, and v14−g, . . . , v14, as shown in Figure 1.
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w13−g

v14−g

w14−g

v13

w13
v14

nk

`k

mk

FIGURE 1. The chain of loops Γ.

We write γk for the kth loop, formed by the two edges of length `k and mk between vk and wk, for
14 − g ≤ k ≤ 13. We write βk for the kth bridge, between wk−1 and vk, for 0 ≤ k ≤ g, which has
length nk. Except where explicitly noted otherwise, we assume that these edge lengths satisfy

(20) `k+1 � mk � `k � nk+1 � nk for all k.

These conditions are precisely as in [FJP, §6.4]. Any curveX whose analytification has such a skeleton
is Brill-Noether general [CDPR].

Given a line bundle L on X we choose an identification L = OX(DX) so that any linear series
V ⊆ H0(X,L) is identified with a finite dimensional vector space of rational functions V ⊆ K(X).
The tropicalization of any nonzero rational function f onX is a piecewise linear function with integer
slopes on Γ, and we write tropV for the set of all tropicalizations of nonzero functions in V .

Any sum of two functions in tropV is the tropicalization of a function in the image of the multipli-
cation map φV : Sym2 V → H0(X,L⊗2). We say that a set of functions {ψ0, . . . , ψn} on Γ is tropically
independent if there are real numbers b0, . . . , bn such that

min{ψ0 + b0, . . . , ψn + bn} 6= min{ψ0 + b0, . . . , ψ̂j + bj , . . . , ψn + bn} for 0 ≤ j ≤ n.
In other words, {ψ0, . . . , ψn} is tropically independent if there are real numbers b0, . . . , bn such that
each ψj + bj achieves the minimum uniquely in mini{ψi + bi} at some point v ∈ Γ. The function
θ = mini{ψi + bi} is then called an independence, since it verifies that {ψ0, . . . , ψn} is independent.

We recall that tropical independence is a sufficient condition for linear independence; if f0, . . . , fn
are nonzero rational functions onX such that {trop(f0), . . . , trop(fn)} is tropically independent on Γ,
then {f0, . . . , fn} is linearly independent inK(X). Therefore, the relevant case of the Strong Maximal
Rank Conjecture, and hence the fact that D̃13 is a divisor, follows immediately from the following.

Theorem 4.1. LetX be a curve of genus 13 with skeleton Γ. Let V be a linear series of degree 16 and dimension
5 on X , and let Σ = tropV . Then there is an independence θ among 20 pairwise sums of functions in Σ.

We will use the following generalization of Theorem 4.1 in our proof that D̃13 represents the virtual
class; the generalization involves analogous statements for linear series satisfying certain ramifica-
tion conditions in genus 12 and 11. The situation is closely parallel to that in [FJP, §8.2]. Recall that
aV0 (p) < . . . < aVr (p) denotes the vanishing sequence of a linear series V of rank r at a point p.

Theorem 4.2. Let X be a curve of genus g ∈ {11, 12, 13} with skeleton Γ, and let p ∈ X be a point
specializing to w13−g . Let V be a linear series of degree 16 and dimension 5 on X , and let Σ = tropV .
Assume that

(i) if g = 12, then aV1 (p) ≥ 2, and
(ii) if g = 11, then either aV1 (p) ≥ 3, or aV0 (p) + aV2 (p) ≥ 5.

Then there is an independence θ among 20 pairwise sums of functions in Σ.

The remainder of this section is devoted to the proof of Theorem 4.2. In all three cases, the ad-
justed Brill-Noether number ρ(V, p) is equal to 1. In particular, this means that there is at most one
lingering loop, and there is exactly one when Σ is unramified and vertex avoiding. Our approach to
constructing the independence is similar to that of [FJP], with a few important differences which we
highlight when they arise.
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Remark 4.3. The differences are subtle but crucial. Even in the unramified and vertex avoiding case,
if we apply the algorithm of [FJP, §7] naively, we obtain an independence among only 19 functions
in Σ. To overcome this difficulty, we divide the graph into blocks in such a way that the lingering
loop is the last loop in its block and has exactly two permissible functions. This allows us to assign
a function to the lingering loop, raising the total number of functions in the independence to 20. See
Remark 4.9.

Throughout, we letDX be a divisor class onX with V ⊆ H0(X,O(DX)). We writeD = Trop(DX),
and we assume throughout that D is a break divisor.

4.1. The unramified vertex avoiding case. We first consider the case where g = 13 and Σ = tropV
is vertex avoiding and unramified. Unramified means that the ramification weights of tropV at w0

and v14, in the sense of [FJP, Definition 6.17], are zero. Vertex avoiding means that, for 0 ≤ i ≤ 5,
there is a unique divisor Di ∼ D such that Di− iw0− (r− i)v14 is effective. A vertex avoiding divisor
is unramified if and only if the support of Di − iw0 − (r − i)v14 contains neither w0 nor v14, for all i.

For ψ ∈ Σ, we write sk(ψ) and s′k(ψ) for the rightward slopes along the incoming and outgoing
bridges of the kth loop γk, at vk and wk, respectively. Since dimV = 6, the functions in Σ have exactly
6 distinct slopes along each tangent vector in Γ.

γk

vk wk

sk s′k

FIGURE 2. The slopes sk and s′k.

Definition 4.4. Let sk[0] < · · · < sk[5] and s′k[0] < · · · < s′k[5] denote the 6 distinct rightward slopes
that occur as sk(ψ) and s′k(ψ), for ψ ∈ Σ.

Since D is vertex avoiding, there is a function ϕi ∈ Σ such that

sk(ϕi) = sk[i] and s′k(ϕi) = s′k[i] for all k,

and it is unique up to additive constants. Since Σ is also unramified, there is a unique lingering loop
γ`, i.e., a unique loop γ` such that s′`[i] = s`[i] for all i. Moreover, there is no function ϕ ∈ Σ with the
property that s`(ϕ) ≤ s`[i] and s′`(ϕ) ≥ s′`[i + 1]. This last condition means that γ` is not a switching
loop, in the sense of [FJP, Definition 6.19].

Our assumption that Σ is unramified implies that the break divisor D satisfies degw0
D = 3, and

the rightward slopes of the functions ψi at w0 are

(s′0[0], . . . , s′0[5]) = (−2,−1, 0, 1, 2, 3).

Let us consider how the slope vector (s′k[0], . . . , s′k[5]) changes as we go from left to right across the
graph. When crossing a loop other than the lingering loop γ`, one of these slopes increases by 1, and
the other 5 remain the same. So, after the first non-lingering loop, the slopes are (−2,−1, 0, 1, 2, 4),
and after the second non-lingering loop, the slopes are either (−2,−1, 0, 1, 2, 5) or (−2,−1, 0, 1, 3, 4).
The data of these slopes is recorded by a standard Young tableau on a rectangle with 2 rows and 6
columns, filled with the symbols 1 through 13, excluding `. If the symbol k appears in column i, then
it is the (5− i)th slope that increases on the loop γk, i.e., s′k[5− i] = sk[5− i] + 1. Note, in particular,
that each slope increases exactly twice, so s′13 = (0, 1, 2, 3, 4, 5) and no slope is ever greater than 5.

We first divide the graph into three blocks. Within each block, the slope of θ will be nearly constant
on each bridge, equal to 4 on bridges in the first block, 3 on bridges in the second block, and 2 on
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bridges in the third block. Let

z1 = min{6, `}
z2 = max{7, `}.

We will construct our independence θ so that its incoming slope at the loop γk is:

sk(θ) =

 4 if k ≤ z1,
3 if z1 < k ≤ z2,
2 if z2 < k ≤ 13.

In other words, γz1 and γz2 are the last loops of the first and second blocks, respectively. Note that
either z1 or z2 is equal to `, so the lingering loop γ` is always the last loop in its block.

The following definition gives a natural necessary condition for a function in Σ to achieve the
minimum at some point of a given loop.

Definition 4.5. Let ψ ∈ PL(Γ) be a function. We say that ψ is permissible on γk if

sk(ψ) ≤ sk(θ) and s′k(ψ) ≥ sk(θ).

We say that ψ is permissible on a block if it is permissible on some loop in that block. A permissible
function ψ is new if sk(ψ) ≤ sk(θ)− 1, and it is departing if s′k(ψ) ≥ sk(θ) + 1.

To understand this definition, recall that θ has nearly constant slopes along bridges, and the
bridges adjacent to a loop are much longer than the bridge itself. If sk(ψ) ≥ sk(θ) + 1, then the
value of ψ at vk exceeds the value of θ at vk by at least the length of the bridge βk (or half this
length, if βk is the bridge between two blocks). Since this bridge is much longer than the loop γk,
it follows that ψ cannot achieve the minimum at any point of γk. A similar argument shows that if
s′k(ψ) ≤ sk(θ) − 1, then ψ cannot achieve the minimum at any point of γk. Our choice of z1 and z2

completely determines which loops have new permissible functions.

Proposition 4.6. There is no new permissible function on γk if and only if k = ` or

(i) ` > 6 and k = 6;
(ii) ` > 7 and k = 7;

(iii) ` < 9 and k = 9; or
(iv) ` ≤ 7, s′7[5] = 4, and k = 8.

Proof. There is no new permissible function on the lingering loop γ`. Suppose k 6= `. Let j be the
unique integer satisfying s′k[j] = sk[j] + 1. There is a new permissible function on γk if and only if
either the function ϕjj is both new and departing, or there is an integer i such that s′k(ϕij) = sk(θ).
We now examine when such an i exists.

The values s′k[i] are 6 distinct integers between −2 and 5. Let a and b be the two integers in this
range that are not equal to s′k[i] for any i. On the hth non-lingering loop, one has

h =

5∑
i=0

(s′k[i] + 2− i) = 9− (a+ b).

Since s′k[j] = sk[j] + 1, we must have that s′k[j] is equal to either a + 1 or b + 1. Without loss of
generality, assume that it is equal to a + 1. There does not exist i such that s′k[i] + s′k[j] = s′k(θ) if
and only if s′k(θ) − (a + 1) is greater than 5, smaller than −2, or equal to either a or b. If it is equal
to a, then the function ϕjj is both new and departing. Since s′k(θ) ≤ 4 and a + 1 ≥ −1, we see that
s′k(θ)− (a+ 1) cannot be greater than 5, and s′k(θ)− (a+ 1) is smaller than −2 if and only if s′k(θ) = 2
and a = 4. By the above calculation, b = s′k(θ)− (a+ 1) if and only if h = 10− s′k(θ).

The 6th non-lingering loop is contained in the first block if and only if ` > 6. The 7th non-lingering
loop is contained in the second block if and only if ` > 7. The 8th non-lingering loop is contained in
the third block if and only if ` < 9. Finally, if a = 4, then γk is one of the first 7 non-lingering loops. If
γk is in the third block, then since z2 ≥ 7, we have ` ≤ 7, and γk is the first loop in the third block. �
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The functions that appear in the tropical independence θ are as follows. Let

B = {ϕi + ϕj : 0 ≤ i ≤ j ≤ 5}.

Note that B has 21 elements. The tropical independence that we construct uses only 20 elements,
which form a subset B′ ⊆ B. We describe how to choose this subset B′. We make our choices so that
the number of permissible functions on each block is 1 more than the number of loops in that block.

If ` ≤ 7, then we let ψ ∈ B be a function that is permissible on the second block and B′ = Br {ψ}.
If ` > 7, then we let ψ ∈ B be a function that is permissible on the third block and B′ = B r {ψ}.

Remark 4.7. Note that there are several functions that are permissible on the second or third block;
it does not matter which of these we choose to omit from the set B′.

Lemma 4.8. On each block, the number of permissible functions in B′ is one more than the number of loops.

Proof. This follows directly from Proposition 4.6. Specifically, since z1 = min{6, `}, there is a new
permissible function in B on each loop of the first block, except for the last one. Since there are
precisely two pairs (i, j) such that s1(ϕij) = 4, we see that the number of permissible functions on
the first block is 1 more than the number of loops. By symmetry, if z2 ≤ 7, then the number of
permissible functions in B on the third block is 1 more than the number of loops, and if z2 > 7, it is 2
more. But when z2 > 7, one of these functions is not in B′.

Finally, we consider the middle block. We count the number of pairs (i, j) such that s′z1(ϕij) = 3.
Since 3 is odd, if (i, j) is such a pair, then i 6= j. It follows that there are 3 such pairs if and only if
s′z1 [i] + s′z1 [5− i] = 3 for all i, which implies that there are precisely 6 non-lingering loops in the first
block. It follows that, if ` < 7, then there are precisely two such pairs, and if ` ≥ 7, there are three such
pairs. By Proposition 4.6, if ` < 7, there is a new permissible function on every loop of the middle
block. If ` = 7, then the middle block contains only one loop, and since this loop is lingering, there
are no new permissible functions on it. In both of these cases, the number of permissible functions in
B on the middle block is therefore 2 more than the number of loops, but one of these functions is not
in B′. If ` > 7, then there are no new permissible functions on γ7 or γ`, so the number of permissible
functions is 1 more than the number of loops. �

Remark 4.9. The algorithm for constructing the tropical independence is identical to that presented
in [FJP, § 7], with one exception. Specifically, we do not skip the lingering loop γ`. Instead, since γ` is
the last loop in its block, there are precisely two unassigned permissible functions on γ`. These two
functions do not have identical restrictions to γ`. Thus, if we adjust their coefficients upward so that
they agree at w`, one of them will obtain the minimum uniquely at some point of the loop γ`. We
assign this function to γ` and adjust its coefficient upward by a small amount ε, small enough so that
it still obtains the minimum uniquely at some point of γ`. The other will then obtain the minimum
uniquely at w`, and we assign this function to the bridge β`+1.

We now verify that this algorithm produces a tropical independence.

Lemma 4.10. Suppose that ϕij is assigned to the loop γk or the bridge βk. Then ϕij does not achieve the
minimum at any point to the right of vk+1.

Proof. If γk is a non-lingering loop, then the proof is the same as [FJP, Lemma 7.21]. On the other
hand, if γk is the lingering loop, then it is the last loop in its block. Since vk+1 is the start of the next
block, ϕij cannot achieve the minimum at any point to the right of vk+1. �

This completes the proof of Theorem 4.2 in the vertex avoiding case.

Remark 4.11. For future reference, we note that the proof of Lemma 4.10 does not depend on the
relative lengths of the bridges. It only uses that the bridges are much longer than the loops. The as-
sumption that each bridge is much longer than the next is only used later, when there are decreasing
bridges, decreasing loops, or switching loops.
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Remark 4.12. If Γ′ is the subgraph of Γ to the right of w1, then Γ′ is a chain of 12 loops whose edge
lengths satisfy the required conditions, and if the first loop is non-lingering, then the restriction of
Σ to Γ′ satisfies the ramification condition of Theorem 4.2, with equality. Similarly, the subgraph to
the right of w2 is a chain of 11 loops whose edge lengths satisfy the required conditions, and the
restriction of Σ to this subgraph satisfies the ramification condition of Theorem 4.2, with equality.
To produce an independence in these cases, assign each function in B′ with slope greater than 4 to
the first bridge, and then proceed as above. There are precisely 15 − g such functions, and they
have distinct slopes along the first bridge, as in [FJP, Lemma 8.25]. Because of this, we can choose
coefficients so that each one obtains the minimum uniquely at some point of the first bridge. Thus
the unramified vertex avoiding cases of Theorem 4.2 for g = 11 and 12 follow from essentially the
same argument as for g = 13. Our choice to index the vertices starting at w13−g reflects the idea that
these linear series with ramification on a chain of g = 11 or 12 loops behave like linear series on a
chain of 13 loops restricted to the subgraph to the right of w13−g .

Example 4.13. We illustrate the construction with an example. Let [D] be a vertex avoiding class of
degree 16 and rank 5 associated to the tableau in Figure 3.

01
02

03
05

04
07

08
11

09
12

10
13

FIGURE 3. The tableau corresponding to the divisor D.

The independence θ = minij{ϕij + cij} that we construct is depicted schematically in Figure 4.
The graph should be read from left to right and top to bottom, so the first 6 loops appear in the
first row, with γ1 on the left and γ6 on the right, and γ13 is the last loop in the third row. The rows
correspond to the three blocks. The 31 dots indicate the support of the divisorD′ = 2D+div(θ). Note
that deg(D′) = 32; the point on the bridge β4 appears with multiplicity 2, as marked. Because ` = 6,
there is a function that is permissible on the second block in B but not B′. The functions in B that are
permissible on the second block are precisely ϕ05, ϕ14, and ϕ23; we have chosen (arbitrarily) to omit
ϕ23 from B′. Each of the 20 functions ϕij in B′ achieves the minimum uniquely on the connected
component of the complement of Supp(D′) labeled ij.

55 45

35 25 44

2

34 33 15

24 · · ·

· · ·

14

05 · · ·

· · ·

22 13 04 03 12 11

02 01 00

FIGURE 4. The divisor D′ = 2D + div(θ). The function ϕij achieves the minimum
uniquely on the region labeled ij in Γ r Supp(D′).

4.2. No switching loops. Recall that a loop γ` is a switching loop for Σ if there is some ϕ ∈ Σ and
some h such that s`(ϕ) ≤ s`[h] and s′`(ϕ) ≥ s′`[h + 1]. It is a lingering loop if it is not a switching
loop and s`[i] = s′`[i] for all i. Recall also that γ` is a decreasing loop if s`[h] > s′`[h]. Similarly β` is a
decreasing bridge if s′`−1[h] > s`[h].
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Because we are only considering cases where the adjusted Brill-Noether number is 1, by [FJP,
Proposition 6.18], we know that there is either a lingering loop, a positive ramification weight, a
decreasing loop, a decreasing bridge, or a switching loop, and these possibilities are mutually exclu-
sive. (More precisely, the sum of all ramification weights plus all multiplicities of loops and bridges,
as defined in [FJP, §6.7], is equal to 1; for decreasing loops and bridges, this means that the index h is
unique and the decrease in slope is exactly 1.) In this subsection, we consider all cases where there is
no switching loop. The cases with a switching loop are discussed in §4.3.

Assume Σ has no switching loops. Then, for all i there is a function ϕi ∈ Σ such that

sk(ϕi) = sk[i] and s′k(ϕi) = s′k[i] for all k.

We again let B = {ϕi + ϕj : 0 ≤ i ≤ j ≤ 5}. As in the unramified vertex avoiding case, we choose a
subset B′ ⊆ B of 20 functions, and we choose integers z1 and z2 in order to divide the graph Γ into 3
blocks. We make our choices to satisfy the following conditions:

(i) no two functions in B′ that are permissible on γk differ by a constant on γk,
(ii) the number of functions in B′ that are permissible on each block is at most one more than

the number of loops in that block,
(iii) no function in B′ is permissible on more than one block,
(iv) if γk is a lingering loop, then it is the last loop in its block,
(v) if γk is a decreasing loop and j is the unique value such that s′k[j] < sk[j], then no function

of the form ϕij ∈ B′ is permissible on γk, and
(vi) if βk is a decreasing bridge and j is the unique value such that sk[j] < s′k−1[j], then either βk

is a bridge between blocks, or no function of the form ϕij ∈ B′ is permissible on γk−1.

Proposition 4.14. If B′ satisfies conditions (i)-(vi), then the functions in B′ are independent.

Proof. The algorithm for constructing the tropical independence is identical to that presented in [FJP,
§7], with the following exceptions. First, as in Remark 4.12, we assign every function with slope
greater than 4 to the first bridge. Second, we do not skip lingering loops and instead treat them as
in the vertex avoiding case above. Finally, the procedure for Proceeding to the Next Block must be
altered slightly when the bridge between the blocks is a decreasing bridge. In this case, there is a
unique point v on the bridge where one of the functions ϕi is locally nonlinear. We initialize the
coefficients of the new permissible functions on the next block so that they are equal to θ at a point
to the right of v. In the case where one of the blocks contains zero loops, we set the coefficient of the
unique function with slope equal to that of θ so that it is equal to θ at a point to the right of v, and
initialize the coefficients of the new permissible functions on the next block so that they are equal to
θ at a point to the right of this.

In [FJP, § 7], Step 4 of the Loop Subroutine requires that there are at most 3 non-departing permis-
sible functions on each loop. In this case, this follows directly from the fact that the rank is 5.

To see that this algorithm produces an independence, suppose that ϕij is assigned to the loop γk
or the bridge βk. We show that ϕij does not achieve the minimum at any point to the right of vk+1.
If γk and βk both have multiplicity zero, then the argument is the same as in [FJP, Lemma 7.21].
On the other hand, if γk has positive multiplicity, then either γk is a decreasing loop, or by (iv) it
is the last loop in its block. If γk is a decreasing loop, then by (v) there is no function in B′ that is
permissible on γk and contains the decreasing function as a summand, so the result holds again by
[FJP, Lemma 7.21]. We may therefore assume that γk is the last loop in its block, in which case the
argument is identical to the vertex avoiding case above.

Similarly, if βk has positive multiplicity, then by (vi) there are two possibilities. If ϕij does not
contain the decreasing function as a summand, then there is nothing to show. Otherwise, βk is a
bridge between blocks. By (iii) the function ϕij is only permissible on one block. Since vk+1 is the
start of the next block, ϕij cannot achieve the minimum at any point to the right of vk+1. �
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For the rest of this section, we explain how to choose z1, z2, and the set B′ in order to satisfy
conditions (i)-(vi). This is done by a careful case analysis, depending on combinatorial properties of
the tropical linear series Σ.

Case 1: There are no loops or bridges of positive multiplicity. This guarantees that the linear
series is ramified either at w13−g or v14 (but not both, since ρ = 1). In this case, we choose z1 and z2

so that γz1 is the first loop in the first block with no new function, and γz2+1 is the last loop in the last
block with no departing function. These loops are guaranteed to exist by a counting argument, but
we can in fact be more explicit.

If Σ is ramified at v14, let k be the smallest positive integer such that s′k[5] = 6, and define

(21) z1 =

{
6 if k ≥ 7;
7 if k ≤ 6; and z2 = max{k − 1, 7}.

If Σ is ramified at w13−g , let k be the largest positive integer such that sk[0] = −3, and define

(22) z1 = min{k, 6}, and z2 =

{
6 if k ≥ 8;
7 if k ≤ 7. .

Let ψ ∈ B be a function that is permissible on the second block, and let B′ = B r {ψ}. (In the case
where z1 = z2, let ψ ∈ B be a function with sz1+1(ψ) = 3.)

If there is a loop or bridge of positive multiplicity, then since ρ = 1, there is only one such loop or
bridge, and it has multiplicity 1.

Case 2: There is a bridge β` of multiplicity 1. If ` ≥ 8 and s′`−1[5] = 6, then define z1 and z2 as in
(21). If ` ≤ 7 and s`[0] = −3, then define z1 and z2 as in (22). Otherwise, define

z1 = min{`− 1, 6}, and z2 = `− 1.

If ` ≥ 8 and s`−1[5] = 6 or ` ≤ 7 and s`[0] = −3, then as above, we let ψ ∈ B be a function that
is permissible on the second block, and let B′ = B r {ψ}. Otherwise, let h be the unique integer
such that s`[h] < s′`−1[h]. If ` 6= 5, 6, then we will see in Lemma 4.15 that either there is a unique i
such that s′`−1[h] + s′`−1[i] = s`−1(θ), or 2s′`−1[h] = s`−1(θ) + 1, but not both. In the first case, we let
B′ = Br {ϕhi}, and in the second case, we let B′ = Br {ϕhh}. (The function in BrB′ is permissible
on both blocks to either side of the bridge β`.) If ` = 5 or 6, then we will see in Lemma 4.15 that there
is a unique i such that s′`−1[h] + s′`−1[i] = s`−1(θ)− 1, and we again let B′ = B r {ϕhi}.

It remains to consider the cases where there is a loop of multiplicity one. The case of a switching
loop is left to the next subsection. In the case of a lingering loop, we construct an independence
exactly as in the unramified vertex avoiding case. We now discuss the only other case.

Case 3: There is a decreasing loop γ`. If ` ≥ 8 and s`[5] = 6, then define z1 and z2 as in (21). If
` ≤ 7 and s′`[0] = −3, then define z1 and z2 as in (22). Otherwise, define

z1 =

 ` if ` < 6,
5 if ` = 6,
6 if ` > 6,

and z2 =

 `− 1 if ` > 8,
8 if ` = 8,
7 if ` < 8.

If ` ≥ 8 and s`[5] = 6 or ` ≤ 7 and s`[0] = −3, then as above, we let ψ ∈ B be a function that is
permissible on the second block, and let B′ = B r {ψ}. Otherwise, let h be the unique integer such
that s′`[h] < s`[h]. If ` < 6 or ` = 7, 8 then γ` is the last loop in its block, and we will see in Lemma 4.15
that either there is a unique i such that s`[h] + s`[i] = s`(θ), or 2s`[h] = s`(θ) + 1, but not both. In the
first case, we let B′ = B r {ϕhi}, and in the second case, we let B′ = B r {ϕhh}. If ` > 8 or ` = 6,
then we will see that either there is a unique i such that s`[h] + s`[i] = s`−1(θ), or 2s`[h] = s`−1(θ) + 1.
Again, in the first case, we let B′ = B r {ϕhi}, and in the second case, we let B′ = B r {ϕhh}.
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In the cases above, we asserted several times that certain functions exist with specified slopes. To
prove this, we need to generalize Proposition 4.6. We first define the following function.

τ(k) =

5∑
i=0

(s′k[i] + 2− i).

Note that, if there is a loop of positive multiplicity and γ` is the kth loop of multiplicity zero, then
k = τ(`). The following observation serves as the basis for our counting arguments.

Lemma 4.15. For a fixed k, suppose that−2 ≤ s′k[i] ≤ 5 for all i. Let j be an integer such that s′k[j]−1 is not
equal to −3 or s′k[i] for any i. For s in the range 2 ≤ s ≤ 5, there does not exist i such that s′k[i] + s′k[j] = s
if and only if one of the following holds:

(i) τ(k) = 10− s;
(ii) s = 5, j = 0, and s′k[0] = −1;

(iii) s = 2, j = 5, and s′k[5] = 5;
(iv) 2s′k[j] = s+ 1.

Proof. The argument is identical to that of Proposition 4.6. �

There are additional relevant cases, when s′k[5] = 6 or s′k[0] = −3.

Lemma 4.16. If s′k[5] = 6, then there does not exist i such that s′k[i] + 6 ≤ 3. Similarly, if sk[0] = −3, then
there does not exist i such that s′k[i]− 2 ≥ 4.

Proof. Since ρ = 1, if s′k[5] = 6, then s′k[0] ≥ −2. It follows that s′k[i] + 6 ≥ 4 for all i. Similarly, if
sk[0] = −3, then s′k[i] ≤ 5 for all i. It follows that s′k[i]− 2 ≤ 3 for all i. �

Lemma 4.17. The set B′ satisfies conditions (i)-(vi).

Proof. Condition (i): If s′k[i] ≥ sk[i] for all i, then the result is immediate, so we may assume that γk is
a decreasing loop. Let h be the unique integer such that s′k[h] = sk[h] + 1, and let h′ be the unique
integer such that s′k[h′] = sk[h′] − 1. If ϕhh′ is not permissible on γk, then again there is nothing to
show. If ϕhh′ is permissible, then by Lemma 4.15, we must have sk(θ) = 10− k. By construction, this
occurs if and only if k = 7, in which case ϕhh′ /∈ B′.

Condition (ii): Consider the first block first. There are two functions ψ ∈ B with the property that
s′13−g(ψ) = 4. The result will therefore hold for the first block if and only if the first block contains
a loop with no new permissible functions. Let γk be a loop of multiplicity zero that is contained in
the first block. By Lemmas 4.15 and 4.16, there is no new permissible function on γk if and only if
τ(k) = 6 or s′k[0] = sk[0]+1 = −2. Thus, the number of permissible functions in B on the first block is
at most 2 more than the number of loops in Cases 2 or 3 when ` ≤ 6 and s`[0] ≥ −2, and 1 more than
the number of loops in the remaining cases. In Cases 2 and 3 when ` ≤ 6 and s`[0] ≥ −2, the function
in B r B′ is permissible on the first block. Since this function is not in B′, the number of functions
in B′ that are permissible on the first block is one less than the number in B. The third block follows
from a completely symmetric argument.

For the second block, note that if τ(z1) = 6, then there are 3 functions ψ ∈ B with the property that
s′z1(ψ) = 3, and otherwise there are only two such functions. In every case, either τ(z1) < 6 or by
Lemma 4.15, the second block contains a loop with no new permissible functions. Since the function
in B r B′ is permissible on the second block, we see that the number of permissible functions on the
second block is one more than the number of loops. (Note that this holds even in the case where
the second block contains zero loops, in which case there is exactly one permissible function on the
second block.)

Condition (iii): Suppose that ϕij ∈ B is permissible on more than one block. First, consider the case
where β` is a bridge of multiplicity one, and let h be the unique integer such that s`[h] = s`−1[h]− 1.
If ϕij is permissible on more than one block, then j = h and either s′`−1[h] + s′`−1[i] = s`−1(θ), or
i = h and 2s′`−1[h] = s`−1(θ) + 1. If −2 ≤ s`[h] ≤ 5, then by Lemma 4.15, such an i exists if and only
if ` 6= 5, 6, and by construction, we have ϕhi /∈ B′. Similarly, if s`[h] = −3, then by Lemma 4.16, such
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an i exists if and only if ` ≥ 8, and if s`[h] = 5, then such an i exists if and only if ` ≤ 7. In both cases,
we have ϕhi /∈ B′.

Next, consider the case where γ` is a decreasing loop. By construction, γ` is either the first or last
loop in its block. Let h be the unique integer such that s′`[h] = s`[h] − 1. If γ` is the last loop in its
block and ϕij is permissible on both the block containing γ` and the next block, then j = h and either
s`[h] + s`[i] = s`(θ), or i = h and 2s`[h] = s`(θ) + 1. But then ϕij /∈ B′. Similarly, if γ` is the first
loop in its block, and ϕij is permissible on both the block containing γ` and the preceding block, then
j = h and either s`[h] + s`[i] = s`−1(θ), or 2s`[h] = s`−1(θ) + 1. If ` 6= 7, then again ϕij /∈ B′. Finally,
note that if γ` is both the first and last loop in its block, then ` = 7, and the only functions ϕij that are
permissible on γ7 satisfy s′`[i] + s′`[j] = 3. The result follows.

Condition (iv): If γ` is a lingering loop, then we follow the construction of the vertex avoiding case
of the previous subsection, in which γ` is the last loop in its block.

Condition (v): Let γk be a decreasing loop, let h be the unique integer such that s′k[h] = sk[h] + 1,
and let h′ be the unique integer such that s′k[h′] = sk[h′]− 1. If ϕhh′ is permissible, then ϕhh′ /∈ B′, as
shown in the proof of condition (i).

Condition (vi): Let βk be a decreasing bridge and let j is the unique value such that sk[j] < s′k−1[j].
If βk is not a bridge between blocks, then by construction either j = 0, k ≤ 7, and sk[0] = −3, or
j = 5, k ≥ 8, and sk[5] = 5. In both cases, by Lemma 4.16, we see that there is no i such that ϕij ∈ B′
is permissible on γk−1. �

This completes the proof of Theorem 4.2 in all cases where there is no switching loop for Σ.

4.3. Switching loops. We now consider the case where there is a switching loop γ`, which switches
slope h. This means that s`[i] = s′`[i] for all i, and there exists a function ϕ ∈ R(D) satisfying

s`(ϕ) = s`[h], s′`(ϕ) = s′`[h] + 1 = s′`[h+ 1].

In this case, we define z1 and z2 as follows:

z1 =

 ` if ` < 6,
5 if ` = 6,
6 if ` > 6;

and z2 =

{
7 if ` < 6,
` if ` ≥ 6.

By [FJP, Proposition 9.18], there is a pencil W ⊆ V with ϕA, ϕB , and ϕC in trop(W ) such that:
(i) s′k(ϕA) = s′k[h] for all k < `;

(ii) sk(ϕB) = sk[h+ 1] for all k > `;
(iii) sk(ϕC) = sk[h+ 1] for all k ≤ `, and s′k(ϕC) = sk[h] for all k ≥ `;
(iv) sk(ϕ•) ∈ {sk[h], sk[h+ 1]} and s′k(ϕ•) ∈ {s′k[h], s′k[h+ 1]} for all k.

Moreover, by [FJP, Lemma 9.19], there are functions ϕ0
h, ϕ

0
h+1, and ϕ∞h in R(D) such that:

(1) sk(ϕ0
h) = sk[h] and s′k(ϕ0

h) = s′k[h] for all k;
(2) sk(ϕ0

h+1) = sk[h+ 1] and s′k(ϕ0
h+1) = s′k[h+ 1] for all k;

(3) sk(ϕ∞h ) = sk[h], s′k−1(ϕ∞h ) = s′k−1[h] for all k ≤ `,
and sk(ϕ∞h ) = sk[h+ 1], s′k−1(ϕ∞h ) = s′k−1[h+ 1] for all k > `.

(4) The function ϕA is a tropical linear combination of the functions ϕ0
h and ϕ∞h , where the two

functions simultaneously achieve the minimum at a point to the right of γ`.
(5) The function ϕB is a tropical linear combination of the functions ϕ0

h+1 and ϕ∞h , where the
two functions simultaneously achieve the minimum at a point to the left of γ`.

(6) The function ϕC is a tropical linear combination of the functions ϕ0
h and ϕ0

h+1, where the
two functions simultaneously achieve the minimum on the loop γ` where they agree.

Note that ϕ0
h, ϕ

0
h+1, and ϕ∞h are in R(D) but not necessarily in Σ. Let

A = {ϕi : i 6= h, h+ 1} ∪ {ϕ0
h, ϕ

0
h+1, ϕ

∞
h },
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and let B be the set of pairwise sums of elements of A. We first choose a subset B′′ ⊆ B, and then
construct a tropical linear combination ϑ of the elements of B′′. Then, as in [FJP, § 9.3], we will obtain
an independence as the best approximation of ϑ by certain pairwise sums of elements of Σ.

We now construct the set B′′. If there exists a j such that s′`[h + 1] + s′`[j] = s`(θ) + 1, then we let
B′ = Br {ϕ0

h +ϕj}. If ` ≤ 7, ` 6= 6, then we let ψ ∈ B′ be a function that is permissible on the second
block, and let B′′ = B′ r {ψ}. If ` = 6, then there exists a unique j such that s′5[j] = s5[j] + 1, and
by Lemma 4.15, there exists a unique i such that s′5[i] + s′5[j] = 4. We let B′′ = B′ r {ϕij}. If ` > 7
and there exists a j such that s′`[h + 1] + s′`[j] = s`(θ), then we let B′′ = B′ r {ϕ0

h + ϕj , ϕ
∞
h + ϕj}.

Otherwise, if ` > 7 and no such j exists, then we let ψ ∈ B be a function that is permissible on the
third block, and let B′′ = B′ r {ψ}.

To construct the tropical linear combination ϑ, we follow the algorithm of [FJP, § 7], with the
following modification. This can be seen as a simplified version of the algorithm from [FJP, § 8]. For
any function ϕ ∈ A, if ϕ+ϕ0

h is assigned to a loop γk with k < `, and if both ϕ+ϕ0
h and ϕ+ϕ∞h are in

B′′, then we also assign ϕ+ϕ∞h to γk. Similarly, if ϕ+ϕ0
h+1 is assigned to a loop γk with k ≥ `, and if

both ϕ+ ϕ0
h+1 and ϕ+ ϕ∞h are in B′′, then we also assign ϕ+ ϕ∞h to γk. The output of this algorithm

satisfies the following.

Lemma 4.18. For each ϕ ∈ A, one of the following holds:
(i) ϕ+ ϕ0

h /∈ B′′,
(ii) ϕ+ ϕ∞h /∈ B′′,

(iii) ϕ+ ϕ∞h is assigned to the same loop as ϕ+ ϕ0
h, or

(iv) ϕ+ ϕ∞h is assigned to the same loop as ϕ+ ϕ0
h+1.

Proof. By construction, it suffices to consider the case where ϕ+ ϕ0
h is not assigned to a loop γk with

k < `, but ϕ+ ϕ0
h+1 is.

If ` < 6, then by Lemma 4.15 there is a departing function on γk for all k < `. If ` is equal to 6 or 7,
then it is the first loop in its block. In each of these cases, it follows that

s`(ϕ) + s`[h+ 1] ≥ s`(θ) + 1.

Since ϕ+ ϕ0
h is not assigned to a loop γk with k < `, we must have equality in the expression above.

By construction, in this case ϕ+ ϕ0
h /∈ B′′.

If ` > 7, then we could instead have

s`(ϕ) + s`[h+ 1] = s`(θ).

But in this case, ϕ+ ϕ∞h /∈ B′′. �

We have the following.

Lemma 4.19. The best approximation of ϑ by ϕC + ϕj achieves equality on the region where either ϕ0
h + ϕj

or ϕ0
h+1 + ϕj achieves the minimum.

Proof. If B′′ contains both ϕ0
h + ϕj and ϕ0

h+1 + ϕj , then this is immediate. If not, it does not contain
ϕ0
h + ϕj , and s′`[h+ 1] + s′`[j] = s`(θ) + 1. In this case, ϕC + ϕj has slope greater than s`(θ) on β`, so

it must achieve equality to the left of γ`−1, where it agrees with ϕ0
h+1 + ϕj . �

As in [FJP, § 9.3], if the best approximation by ϕC + ϕj achieves equality where ϕ0
h + ϕj achieves

the minimum, then we replace Bj = B′′ ∩ {ϕ0
h + ϕj , ϕ

0
h+1 + ϕj , ϕ

∞
h + ϕj} with {ϕB + ϕj , ϕC + ϕj}.

Otherwise, if it achieves equality where ϕ0
h+1 + ϕj achieves the minimum, then we replace Bj with

{ϕA + ϕj , ϕC + ϕj}. If ϕ∞h + ϕj /∈ B′′, then we replace only with {ϕC + ϕj}. Similarly, we replace
the subset of B′′ consisting of pairwise sums of elements of {ϕ0

h, ϕ
0
h+1, ϕ

∞
h }with three pairwise sums

of elements of {ϕA, ϕB , ϕC}. The best approximation of ϑ by these replacements is then a tropical
independence among pairwise sums of elements of Σ. This completes the proof of Theorem 4.2 in all
cases where there is a switching loop for Σ.
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5. EFFECTIVITY OF THE VIRTUAL CLASS

Recall that M̃13 is an open substack of the moduli stack of stable curves, and G̃rd is a stack of
generalized limit linear series of rank r and degree d over M̃13. There is a morphism of vector
bundles φ : Sym2(E)→ F over G̃rd, whose degeneracy locus is denoted by U.

The case of Theorem 4.2 where g = 13 shows that the push forward σ∗[U]virt under the proper
forgetful map σ : G̃rd → M̃g is a divisor, not just a divisor class. In our proof that σ∗[U]virt is effective,
we will use the additional cases where g = 12 or 11. Theorem 4.2 implies the following:

Theorem 5.1. Let X be a general curve of genus g ∈ {11, 12, 13}, and let p ∈ X be a general point. Let
V ⊆ H0(X,L) be a linear series of degree 16 and rank 5. Assume that

(i) if g = 12, then aV1 (p) ≥ 2, and
(ii) if g = 11, then either aV1 (p) ≥ 3, or aV0 (p) + aV2 (p) ≥ 5.

Then the multiplication map φV : Sym2 V → H0(X,L⊗2) is surjective.

We now prove that U is generically finite over each component of σ∗[U]virt, which implies that
σ∗[U]virt is effective. Our argument follows closely that of [FJP, § 10]. Indeed, in many cases the
arguments are identical, and we omit the proof. As in [FJP, § 10], we suppose that Z ⊆ M13 is
an irreducible divisor and that σ|U has positive dimensional fibres over the generic point of Z. Let
2 : M2,1 → M13 be the map obtained by attaching an arbitrary pointed curve of genus 2 to a fixed
general pointed curve (X, p) of genus 11. Since g = 13 is odd, by [FJP, Proposition 2.2], it suffices to
show the following:

(1) Z is the closure of a divisor inM13,
(2) j∗2 (Z) = 0, and
(3) Z does not contain any codimension 2 stratum ∆2,j .

The only irreducible boundary divisors in M̃13 are ∆◦0 and ∆◦1. Therefore, item (1), that Z is the
closure of a divisor inM13, is a consequence of the following.

Proposition 5.2. The image of the degeneracy locus U does not contain ∆◦0 or ∆◦1.

Proof. The proof is identical to [FJP, Proposition 10.3]. �

The proofs of (2) and (3) use the following lemma.

Lemma 5.3. If [X] ∈ Z and p ∈ X , then there is a linear series V ∈ G5
16(X) that is ramified at p such that

φV is not surjective.

Proof. The proof is identical to [FJP, Lemma 10.4]. �

5.1. Pulling back toM2,1. In order to verify (2), we consider the preimage of Z under the map 2.

Lemma 5.4. The preimage −1
2 (Z) is contained in the Weierstrass divisorW2 inM2,1.

Proof. The proof is identical to [FJP, Lemma 10.5]. �

To prove that ∗2(Z) = 0, we consider the following construction. Let Γ be a chain of 13 loops with
the following restrictions on edge lengths:

(i) m2 = `2 (that is, the second loop has torsion index 2),
(ii) n3 � n2, and

(iii) `k+1 � mk � `k � nk+1 � nk for all k 6= 2.
The last condition says that, subject to the constraints of conditions (i) and (ii), the edge lengths
otherwise satisfy (20). Let X be a smooth curve of genus 13 over K whose skeleton is Γ. We first note
the following.

Lemma 5.5. If [X] /∈ Z, then ∗2(Z) = 0.

Proof. This proof is identical to the first part of the proof of [FJP, Proposition 10.6]. �
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Proposition 5.6. We have ∗2(Z) = 0.

Proof. By Lemma 5.5, it suffices to show that [X] /∈ Z. We divide Γ into two subgraphs Γ̃′ and Γ̃, to
the left and right, respectively, of the midpoint of the long bridge β3. Let q ∈ X be a point specializing
to v14. If [X] ∈ Z, by Lemma 5.3 there is a linear series in the degeneracy locus overX that is ramified
at q. We now show that this impossible.

Let ` =
(
L, V

)
∈ G5

16(X) be a linear series ramified at q. We may assume that L = O(DX), where
D = Trop(DX) is a break divisor, and consider Σ = trop(V ). We will show that there are 20 tropically
independent pairwise sums of functions in Σ using a variant of the arguments in § 4. It follows that
the multiplication map φ` is surjective, and hence [X] cannot be in Z.

To produce 20 tropically independent pairwise sums of functions in Σ, following the methods of
§ 4, we first consider the slope sequence along the long bridge β3. First, suppose that either s3[4] ≤ 2

or s3[3] + s3[5] ≤ 5. In this case, even though the restriction of Σ to Γ̃ is not the tropicalization
of a linear series on a pointed curve of genus 11 with prescribed ramification, it satisfies all of the
combinatorial properties of the tropicalization of such a linear series. The proof of Theorem 4.2 then
goes through verbatim, yielding a tropical linear combination of 20 functions in Σ such that each
function achieves the minimum uniquely at some point of Γ̃ ⊆ Γ.

For the remainder of the proof, we therefore assume that s3[4] ≥ 3 and s3[3] + s3[5] ≥ 6. Since
degD|Γ̃′ = 5, we see that s3[5] ≤ 5. Moreover, since the divisor D|Γ̃′ − s3[4]w2 has positive rank on Γ̃′,

and no divisor of degree 1 on Γ̃′ has positive rank, s3[4] must be exactly 3. Since the canonical class
is the only divisor class of degree 2 and rank 1 on Γ̃′, we see that D|Γ̃′ ∼ KΓ̃′ + 3w2. This yields an
upper bound on each of the slopes s3[i], and these bounds determine the slopes for i ≥ 2:

s3[5] = 5, s3[4] = 3, s3[3] = 1, s3[2] = 0.

Moreover, we must have s′2[i] = s3[i] for 2 ≤ i ≤ 5. Since ` is ramified at q, we also have s14[5] ≥ 6.
These conditions together imply that the sum of the multiplicities of all loops and bridges on Γ̃ is at
most 1.

To construct an independence on Γ, we first construct an independence among 5 functions on Γ̃′.
This is done exactly as in [FJP, Figure 26], and we omit the details.

Next, we construct an independence among 15 pairwise sums of functions in Σ restricted to Γ̃,
with the property that any function ψ that obtains the minimum on Γ̃ satisfies s′2(ψ) ≤ 4. Note that
each of the functions ψ that obtains the minimum on Γ̃′ satisfies s3(ψ) ≥ 5. Since the bridge β3 is very
long, it follows that no function that obtains the minimum on one of the two subgraphs can obtain
the minimum on the other. Thus, we have constructed a tropical linear combination of 20 pairwise
sums of functions in Σ in which 5 achieve the minimum uniquely at some point of Γ̃′ and 15 achieve
the minimum uniquely at some point of Γ̃. In particular, this is an independence, as required.

It remains to construct an independence among 15 pairwise sums of functions in Σ restricted to
Γ̃. To do this, we run the algorithm from [FJP], with one change. (Indeed, one could imagine that Γ
is simply the first 13 loops in a chain of 23 loops. We construct the independence from [FJP, § 10.3],
and restrict it to Γ.) At the start, we skip the step named “Start at the First Bridge”. Instead, we
do not assign any function ψ with s3(ψ) ≥ 5, and we start with the Loop Subroutine applied to γ3.
Following this construction, there will only be two blocks, and there will be two functions with slope
2 along the last bridge β14. We eliminate one of these functions from B, and assign the other to β14.
The rest of the argument is exactly the same as that of [FJP]. �

5.2. Higher codimension boundary strata. It remains to verify (3), that Z does not contain any of
the codimension 2 boundary strata ∆2,j ⊆M13.

Proposition 5.7. The component Z does not contain any codimension 2 stratum ∆2,j .

Proof. The proof is again a variation on the independence constructions from the proof of Theo-
rem 4.2. We fix ` = 11−j. Let Y1 be a smooth curve of genus 2 overK whose skeleton Γ1 is a chain of
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2 loops with bridges, and let p ∈ Y1 be a point specializing to the right endpoint of Γ1. Similarly, let
Y2 and Y3 be smooth curves of genus ` and j, respectively, whose skeletons Γ2 and Γ3, are chains of `
loops and j loops with edge lengths satisfying (20). Suppose further that the edges in the final loop
of Γ2 are much longer than those in the first loop of Γ3. Let p, q ∈ Y2 be points specializing to the left
and right endpoints of Γ2, respectively, and let q ∈ Y3 be a point specializing to the left endpoint of
Γ3. We show that [Y ′] = [Y1 ∪p Y2 ∪q Y3] ∈ ∆2,j is not contained in Z.

As in the proof of [FJP, Proposition 10.6], if [Y ′] ∈ Z, then Z contains points [X] corresponding to
smooth curves whose skeletons are arbitrarily close to the skeleton of Y ′ in the natural topology on
M

trop

13 . In particular, there is an X ∈ Z with skeleton a chain of loops ΓX whose edge lengths satisfy
all the conditions of (20), except that the bridges β3 and β` are exceedingly long in comparison to the
other edges. Let Γ be the subgraph of ΓX to the right of the midpoint of the bridge β3. Note that Γ is
a chain of 11 loops, labeled γ3, . . . , γ13, with bridges labeled β3, . . . , β14.

By Lemma 5.3, there is a linear series V of degree 16 and rank 5 on X that is ramified at a point x
specializing to the righthand endpoint v14, and such that φV is not surjective. We will show that this
is not possible, using the tropical independence construction from § 4. Let Σ = trop(V ). We have
that either s′2[4] ≤ 2 or s′2[3] + s′2[4] ≤ 5. Also, since V is ramified at x, we have s14[5] ≥ 6. These
conditions imply that the multiplicity of every loop and bridge is zero. In particular, for each i there
is a function ϕi satisfying

sk(ϕi) = s′k−1(ϕi) = sk[i] = s′k−1[i] for all k.

These functions have constant slope along bridges, and the slopes sk(ϕi) are nondecreasing in k.
These properties guarantee that, even though the bridge β` is very long, a function ϕij can only
obtain the minimum on a loop or bridge where it is permissible.

Even though the restriction of Σ to Γ is not the tropicalization of a linear series on a curve of genus
11 with prescribed ramification at two specified points specializing to the left and right endpoints
of Γ, it satisfies all of the combinatorial properties of the tropicalization of such a linear series, and
we may apply the algorithm from § 4. Because we are in a situation where the relative lengths of
the bridges do not matter (Remark 4.11) the construction yields an independence among 20 pairwise
sums of functions in Σ, and the proposition follows. �

6. THE BERTRAM-FEINBERG-MUKAI CONJECTURE IN GENUS 13

The aim of this section is to prove the existence part of the Bertram-Feinberg-Mukai conjecture on
M13. For a smooth curve X of genus g, we denote by SUX(2, ω) the moduli space of S-equivalence
classes of semistable rank 2 vector bundles E on X with det(E) ∼= ωX . For an integer k ≥ 0, the
Brill-Noether locus

SUX(2, ω, k) :=
{
E ∈ SUX(2, ω) : h0(X,E) ≥ k

}
has the structure of a Lagrangian degeneracy locus and each component of SUX(2, ω, k) has dimen-
sion at least β(2, g, k) = 3g− 3−

(
k+1

2

)
, see [Mu2]. Furthermore, SUX(2, ω, k) is smooth of dimension

β(2, g, k) at a point [E] corresponding to a stable vector bundle if and only if the Mukai-Petri map (1)
is injective. Of particular interest to us is the case

g = 13 and k = 8,

in which case β(2, 13, 8) = 0. First, using linkage methods, we show that a general curve of genus 13
carries a stable vector bundle E ∈ SUX(2, ω, 8). Then using a Hecke correspondence, we compute
the fundamental class of SUX(2, ω, 8).

Theorem 6.1. A general curve X of genus 13 caries a stable vector bundle E of rank 2 with det(E) ∼= ωX
and h0(X,E) = 8.

As a first step towards proving Theorem 6.1, we determine the extension type of the vector bun-
dles in question.
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Proposition 6.2. For a general curveX of genus 13, every vector bundleE ∈ SUX(2, ω, 8) can be represented
as an extension

(23) 0 −→ OX(D) −→ E −→ ωX(−D) −→ 0,

where D is an effective divisor of degree 6 on X , such that L := ωX(−D) ∈ W 6
18(X) is very ample and the

map φL : Sym2H0(X,L) → H0(X,L⊗2) is not surjective. Conversely, a very ample L ∈ W 6
18(X) with φL

not surjective induces a stable vector bundle E ∈ SUX(2, ω, 8).

Proof. Using a result of Segre [LN, Proposition 3.1], every semistable vector bundle E on X of rank 2

and canonical determinant carries a line subbundle OX(D) ↪→ E with deg(D) ≥ g−2
2 . Therefore, in

our case deg(D) ≥ 6.
If h0(X,OX(D)) ≥ 2, since h0(X,OX(D)) + h0(X,ωX(−D)) ≥ h0(X,E) = 8 it follows from the

Brill-Noether Theorem and Riemann-Roch that deg(D) = 8 and the multiplication map φωX(−D) is
not surjective, which contradicts Theorem 1.5. Therefore h0(X,OX(D)) = 1, in which case necessar-
ily deg(D) = 6 and h0(X,E) = h0(X,OX(D)) + h0(X,ωX(−D)). Setting L := ωX(−D) ∈ W 6

18(X),
an extension E satisfies h0(X,E) = 8 if and only if the extension class of E in Ext1(L,D) lies in the
kernel of the linear map

Ext1(L,D)→ H0(L)∨ ⊗H1(D).

Thus, an extension (23) exists if and only if the multiplication map

φL : Sym2H0(L)→ H0(X,L⊗2) ∼= Ext1(L,D)∨

is not surjective. We claim that L is very ample. Otherwise, there exist points x, y ∈ X such
that L′ := L(−x − y) ∈ W 5

16(X). Since X is general, by Theorem 1.5 the multiplication map
φL′ : Sym2H0(X,L′) → H0

(
X, (L′)⊗2

)
is surjective, implying the inclusion H0

(
X, (L′)⊗2(x + y)

)
⊆

Im(φL). We deduce that [E] lies in the kernel of the map

Ext1(L,D)→ Ext1(L(−x− y), D).

That is, the vector bundle E can also be represented as an extension

0 −→ L(−x− y) −→ E −→ OX(D + x+ y) −→ 0,

thus contradicting the semistability of E. We conclude that L has to be very ample.
Conversely, each very ample linear system L ∈ W 6

18(X), for which the map φL is not surjective
induces a stable vector bundle E; see also [CGZ, 7.2]. Indeed, let us assume E is not semistable.
In view of the extension (23), a maximally destabilizing line subbundle of E is of the form L(−M),
where M is an effective divisor on X with deg(M) ≤ 6. Therefore, apart from (23), E can also be
realized as an extension

0 −→ L(−M) −→ E −→ OX(D +M) −→ 0.

By applying Riemann-Roch, one can then write

h0
(
X,L(−M)

)
+ h1

(
X,L(−M)

)
= h0(X,L) + h1(X,L)− 2 dim

H0(X,L)

H0(X,L(−M))
+ deg(M).

Since
h0(X,L) + h1(X,L) = h0(X,E) ≤ h0

(
X,L(−M)

)
+ h1

(
X,L(−M)

)
,

it follows that

deg(M) ≥ 2 dim
H0(L)

H0(L(−M))
.

Since L is very ample, we find deg(M) ∈ {4, 5, 6}. In each case, the Brill-Noether number of L(−M)
is negative, contradicting the generality of X . Therefore E is stable. �
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Proof of Theorem 6.1. By Proposition 6.2, it suffices to show that for a general curve X of genus 13,
there exists a very ample linear system L ∈ W 6

18(X) such that φL is not surjective. We use a method
inspired by Verra’s proof of the unirationality ofM14 [Ve]. To illustrate the idea behind the proof,
first suppose that there exists an embedding ϕL : X ↪→ P6 given by L ∈ W 6

18(X), such that the map
φL is not surjective. In particular, X ⊆ P6 lies on at least 5 =

(
8
2

)
− h0(X,L⊗2) − 1 quadrics. We

expect the base locus of this system of quadrics to be a reducible curve (of degree 32), containing X
as a component and write accordingly

X + C = Bs
∣∣IX/P6(2)

∣∣.
Assuming that X and C intersect transversally, we obtain that C is a curve of degree 14 and 2g(X)−
2g(C) = (10− 7)

(
deg(X)− deg(C)

)
= 12, therefore g(C) = 7.

We now reverse this procedure and start with a general curve C ⊆ P6 of genus 7 embedded by a
7-dimensional linear system V ⊆ H0(C,LC), where LC ∈ Pic14(C) is a general line bundle, therefore
h0(C,LC) = 8. Consider the multiplication map

φV : Sym2(V )→ H0(C,L⊗2
C )

and observe that Ker(φV ) has dimension at least 6 = dim Sym2(V ) − h0(L⊗2
C ). Choose a general

5-dimensional system of quadrics W ∈ G
(
5, H0(P6, IC/P6(2))

)
. We then expect

(24) Bs |W | = C +X ⊆ P6

to be a nodal curve, and the curve X linked to C to be a smooth curve of degree 18 and genus 13.
Setting L := OX(1) ∈W 6

18(X), by construction L is very ample and the embedded curve X ⊆ P6 lies
on at least 5 quadrics, therefore φL is not surjective.

To carry this out, one needs to check some transversality statements. Let Pic14
7 be the universal

Picard variety parametrizing pairs [C,LC ], where C is a smooth curve of genus 7 and LC ∈ Pic14(C).
As pointed out in [Ve, Theorem 1.2], it follows from Mukai’s work [Mu1] that Pic14

7 is unirational.
We introduce the variety:

Y :=
{

[C,LC , V,W ] : [C,LC ] ∈ Pic14
7 , V ∈ G

(
6, H0(C,LC)

)
,W ∈ G

(
5,Ker(φV )

)}
The forgetful map Y → Pic14

7 has the structure of an iterated locally trivial projective bundle over
Pic14

7 , therefore Y is unirational as well. Moreover,

dim(Y) = dim(Pic14
7 ) + dim G(7, 8) + dim G(5, 6) = 4 · 7− 3 + 7 + 5 = 37.

One has a rational linkage map

χ : Y 99K SU13(2, ω, 8), [C,LC , V,W ] 7→ [X,L,E],

where X is defined by (24), L := OX(1) ∈ W 6
18(X) and E ∈ SUX(2, ω, 8) is the rank 2 vector bundle

defined uniquely by the extension 0→ ωX ⊗ L∨ → E → L→ 0.

To show that χ is well-defined it suffices to produce one example of a point in Y for which all
these assumptions are realized. To that end, we consider 11 general points p1, . . . , p5 and q1, . . . , q6

respectively in P2 and the linear system

H ≡ 6h− 2(Ep1 + · · ·+ Ep5)− (Eq1 + · · ·+ Eq6)

on the blow-up S = Bl11(P2) at these points. Here h denotes the pullback of the line class from P2.

Via Macaulay2 one checks that S
|H|
↪→ P6 is an embedding and the graded Betti diagram of S is the

following:
1 − − − −
− 5 − − −
− − 15 16 15
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Next we consider a general curve C ⊆ S in the linear system

C ≡ 10h− 4(Ep1 + Ep2 + Ep3 + Ep4)− 3Ep5 − 2(Eq1 + Eq2)− (Eq3 + Eq4 + Eq5 + Eq6).

Via Macaulay2, we verify that C is smooth, g(C) = 7 and deg(C) = 14. Furthermore, using that
H1
(
P6, IS/P6(2)

)
= 0, we have an exact sequence

0 −→ H0
(
P6, IS/P6(2)

)
−→ H0

(
P6, IC/P6(2)

)
−→ H0

(
S,OS(2H − C)

)
−→ 0.

SinceOS(2H−C) = OS(2h−Ep5 −Eq3 −Eq4 −Eq5 −Eq6), clearly h0
(
S,OS(2H−C)

)
= 1, therefore

h0
(
P6, IC/P6(2)

)
= 6. That is, C ⊆ P6 is a 2-normal curve.

One also verifies with Macaulay2 that C ⊆ P6 is scheme-theoretically cut out by quadrics. Using
[Ve, Proposition 2.2],C lies on a smooth surface Y ⊆ P6 which is a complete intersection of 4 quadrics
containing C. Furthermore, the linear system

∣∣OY (2H − C)
∣∣ is base point free, so a general element

X ∈
∣∣OY (2H − C)

∣∣ is a smooth curve of genus 13 meeting C transversally. Finally, a standard
argument using the exact sequence 0 → OY (H −X) → OY (H) → OX(H) → 0 shows that since C
is 2-normal, the residual curve X is 1-normal. That is, h1

(
X,OX(1)

)
= 1. This implies that the map

χ : Y 99K SU13(2, ω, 8) is well-defined and dominant. �

Corollary 6.3. The parameter space SU13(2, ω, 8) is unirational.

Proof. This follows from the proof of Theorem 6.1 and from the unirationality of Y . �

6.1. The fundamental class of SUX(2, ω, 8) for a general curve. It is essential for our calculations to
determine the degree of the map

ϑ : SU13(2, ω, 8)→M13, ϑ
(
[X,E]

)
= [X].

We fix a general curve X of genus g and a point p ∈ X . Since the moduli space SUX(2, ω) is singu-
lar, in order to determine the fundamental class of the non-abelian Brill-Noether locus SUX(2, ω, k),
following [Ne], [LN], [Mu2] one uses instead the Hecke correspondence relating SUX(2, ω) to the
smooth moduli space SUX(2, ω(p)) of stable rank 2 vector bundles F on X with det(F ) ∼= ωX(p).

Recall that SUX(2, ω(p)) is a fine moduli space. Hence there is a universal rank 2 vector bundle F
on X × SUX(2, ω(p)) and we consider the Hecke correspondence

P := P
(
F|{p}×SUX(2,ω(p))

)
,

endowed with the projection π1 : P→ SUX(2, ω(p)). The points of P are exact sequences

(25) 0 −→ E −→ F −→ K(p) −→ 0,

where F ∈ SUX(2, ω(p)), and therefore det(E) ∼= ωX . One has a diagram

P
π1

yy

ρ

$$
SUX(2, ω(p)) SUX(2, ω)

where ρ assigns to a sequence (25) the semistable vector bundle E . Set

h := c1
(
OP(1)

)
= ρ∗c1(Lev),

where Lev is the determinant line bundle on SUX(2, ω), associated to the effective divisor

Θ :=
{
E ∈ SUX(2, ω) : H0(X,E) 6= 0

}
.

Set α := c1
(
Lodd

)
∈ H2

(
SUX(2, ω(p)),Z

)
, where Lodd is the ample generator of Pic

(
SUX(2, ω(p))

)
.

Note that Pic(P) is generated by h and by π∗1(α).
For each k ∈ N, the non-abelian Brill-Noether locus

BP(k) :=
{[

0→ E → F → K(p)→ 0
]
∈ P : h0(X,E) ≥ k

}
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has the structure of a Lagrangian degeneracy locus of expected codimension β(2, g, k) + 1 = 3g− 2−(
k+1

2

)
, see [Mu2, Section 5] and [LN, Section 2]. As such, its virtual class [BP(k)]virt ∈ H∗(P,Q) can

be computed in terms of certain tautological classes, whose definition we recall now.
Following [Ne], we consider the Künneth decomposition of the Chern classes of F , using that

det(F) ∼= ωX(p)� Lodd and write

c1(F) = α+ (2g − 1)ϕ and c2(F) = χ+ ψ + gα⊗ ϕ,

where ϕ ∈ H2(X,Q) is the fundamental class of the curve, χ ∈ H4
(
SUX(2, ω(p)),Q

)
and ψ is in

H3
(
SUX(2, ω(p)),Q

)
⊗H1(X,Q). Finally, we define the class

γ ∈ H6
(
SUX(2, ω(p)),Q

)
by the formula ψ2 = γ ⊗ ϕ. One has the relation

h2 = αh− α2 − β
4

∈ H4(P,Q),

from which we can recursively determine all powers of h. We summarize as follows:

Proposition 6.4. For each n ≥ 2, the following relation holds in H∗(P,Q):

hn =
h(−2α+ 2h)

√
β + α2 − 2αh+ β√

β(α2 − β)

(α+
√
β

2

)n
+
h(2α− 2h)

√
β + α2 − 2αh+ β√

β(α2 − β)

(α−√β
2

)n
.

In this formula
√
β is a formal root of the class β. Applying [LN, Section 3] or [Mu2] one can

endow BP(k) with the structure of a Lagrangian degeneracy locus as follows. Let E be the vector
bundle on X × P defined by the following exact sequence:

0 −→ E −→
(
id× π1

)∗
(F)→ (p2)∗

(
OP(1)

)
−→ 0,

where p2 : X × P → P is the projection. Choose an effective divisor D of large degree on X and also
denote by D its pull-back under X × P→ X . Then (p2)∗

(
E/E(−D)

)
and (p2)∗(E(D)) are Lagrangian

subbundles of (p2)∗
(
E(D)/E(−D)

)
. For each point t := [0→ E → F → K(p)→ 0] ∈ P, one has

(p2)∗

(
E(D)

)
(t) ∩ (p2)∗

(
E/E(−D)

)
(t) ∼= H0(X,E).

Assume from now on g = 13 and k = 8, therefore we expect BP(8) to be 1-dimensional. Ap-
plying the formalism for Lagrangian degeneracy loci [Mu2, Proposition 1.11], we find the following
determinantal formula for its virtual fundamental class

(26) [BP(8)]virt =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c8 c9 c10 c11 c12 c13 c14 c15

c6 c7 c8 c9 c10 c11 c12 c13

c4 c5 c6 c7 c8 c9 c10 c11

c2 c3 c4 c5 c6 c7 c8 c9
c0 c1 c2 c3 c4 c5 c6 c7
0 0 c0 c1 c2 c3 c4 c5
0 0 0 0 c0 c1 c2 c3
0 0 0 0 0 0 c0 c1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
where ci ∈ H2i(P,Q) are defined recursively by the following formulas, see [LN, Corollary 4.2]:

(27) c1 = h, c2 =
h2

2
, c3 =

1

3

(h3

2
+
βh

4
− γ

2

)
, c4 =

1

4

(h4

6
+
βh2

3
− 2γh

3

)
,

and for each n ≥ 1,

(28) (n+ 4)cn+4 −
n+ 2

2
βcn+2 +

(β
4

)2

ncn = hcn+3 −
(βh

4
+
γ

2

)
cn+1.
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In order to evaluate the determinant giving [BP(8)]virt, we shall use Proposition 6.4 coupled with
the formula of Thaddeus [Th] determining all top intersection numbers of tautological classes on
SUX(2, ω(p)). Precisely, for m+ 2n+ 3p = 3g − 3, one has

(29)
∫
SUX(2,ω(p))

αm · βn · γp = (−1)g−p
g!m!

(g − p)!q!
22g−2−p(2q − 2)Bq,

where q = m + p + 1 − g and Bq denotes the Bernoulli number; those appearing in our calculation
are:

B2 =
1

6
, B4 = − 1

30
, B6 =

1

42
, B8 = − 1

30
, B10 =

5

66
, B12 = − 691

2730
, B14 =

7

6
,

B16 = −3617

510
, B18 =

43867

798
, B20 = −174611

330
, B22 =

854513

138
, B24 = −236364091

2730
.

Theorem 6.5. For a general curve X of genus 13, the locus SUX(2, ω, 8) consists of three reduced points
corresponding to stable vector bundles.

Proof. As explained, the Lagrangian degeneracy locus BP(8) is expected to be a curve and we write

[BP(8)]virt = f(α, β, γ) + h · u(α, β, γ),

where f(α, β, γ) and u(α, β, γ) are homogeneous polynomials of degree 36 = 3g− 3 and 35 = 3g− 4,
respectively.

Observe that if E ∈ SUX(2, ω, 8) then necessarily E is a stable bundle. Otherwise E is strictly
semistable, in which case E = B ⊕ (ωX ⊗ B∨), where B ∈ W 3

12(X), which contradicts the Brill-
Noether Theorem on X . Since ρ is a P1-fibration over the locus of stable vector bundles, it follows
that BP(8) is a P1-fibration over SUX(2, ω, 8). Furthermore, applying [T2], the Mukai-Petri map µE
is an isomorphism for each vector bundle E ∈ SUX(2, ω, 8), therefore SUX(2, ω, 8) is a reduced zero-
dimensional cycle. We denote by a its length, thus we can write

(30) [BP(8)] = [BP(8)]virt = aρ∗([E0]) = f(α, β, γ) + h · u(α, β, γ),

where [E0] ∈ SUX(2, ω) is general. Intersecting both sides of (30) with h, we obtain

h · f(α, β, γ) = −h · αu(α, β, γ).

Next observe that ρ∗([E0]) · α = 2. Indeed, since ρ is a P1-fibration over the open locus of stable
bundles and ωP = ρ∗(Lev)⊗ π∗(−α), it follows that

−2 = deg
(
ωP|ρ∗([E0])

)
= ωP · ρ∗([E0]) = −α · ρ∗([E0]).

Intersecting both sides of (30) with α, we find 2a = h · αu(α, β, γ) = −h · f(α, β, γ), so

a =
∣∣SUX(2, ω, 8)

∣∣ =
1

2

∫
P
hf(α, β, γ) =

1

2

∫
SUX(2,ω(p))

f(α, β, γ).

We are left with the task of computing the degree 36 polynomial f(α, β, γ), which is a long but
elementary calculation. We consider the determinant (26) computing the class of BP(8). First we
substitute for each of the classes c1, . . . , c15 the expression in terms of α, β, γ, h given by the recursion
(28), starting with the initial conditions (27). Evaluating this determinant, we obtain a polynomial of
degree 36 in the classes α, β, γ and h. We recursively express all the powers hn with n ≥ 2 and obtain
a formula of the form [BP(8)] = f(α, β, γ) + h · u(α, β, γ). We set h = 0 in this formula and then we
evaluate each monomial of degree 36 in α, β, γ using Thaddeus’ formulas (29). At the end, we obtain
f(α, β, γ) = −6, which completes the proof of Theorem 6.53. �

3The Maple file describing all the calculations explained here can be found at https://www.mathematik.hu-
berlin.de/farkas/gen13bn.mw
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7. THE NON-ABELIAN BRILL-NOETHER DIVISOR ONM13

In this section we determine the class of the non-abelian Brill-Noether divisor MP13 and prove
Theorem 1.1. The results in this section also lay the groundwork for the proof that R13 is of general
type.

7.1. Tautological classes on the universal non-abelian Brill-Noether locus.

Definition 7.1. Let M]
13 be the open subset of M13 consisting of (i) smooth curves X of genus 13

with SUX(2, ω, 9) = ∅, or of (ii) 1-nodal irreducible curves [X/y ∼ q], where X is a 7-gonal smooth
genus 12 curve, y, q ∈ X , and such that the multiplication map φL : Sym2H0(X,L)→ H0(X,L⊗2) is
surjective for each L ∈W 5

15(X).

Note thatM]
13 andM13∪∆0 agree in codimension one, in particular we identify CH1(M]

13) with
Q〈λ, δ0〉. We let SU ]13(2, ω, 8) be the moduli space of pairs [X,E], with [X] ∈ M]

13 and E is a rank 2

vector bundle on X with det(E) ∼= ωX and h0(X,E) ≥ 8. We still denote by ϑ : SU ]13(2, ω, 8)→M]
13

the forgetful map.

Proposition 7.2. The map ϑ : SU ]13(2, ω, 8)→M]
13 is proper. Furthermore, for each [X,E] ∈ SU ]13(2, ω, 8)

the corresponding vector bundle E is globally generated.

Proof. Suppose X → T is a flat family of stable curves of genus 13, such that its generic fibre Xη is
smooth and the special fibreX0 corresponds to a 1-nodal curve inM]

13. The moduli space SUXη (2, ω)
specializes to a moduli space SUX0

(2, ω) that is a closed subvariety of the moduli space UX0
(2, 24) of

S-equivalence classes of torsion free sheaves of rank 2 and degree 24 onX0. The points in SUX0
(2, ω)

are described in [Su].
We claim that if E ∈ SUX0

(2, ω) satisfies h0(X0, E) ≥ 8, then necessarily E is locally free, in which
case

∧2
E ∼= ωX0

. Suppose ν : X → X0 is the normalization map, let y, q ∈ X denote the inverse
images of the node p of X0 and assume E is not locally free at p. Denoting by mp ⊆ OX0,p the
maximal ideal, either (i) Ep ∼= mp ⊕ mp, or else (ii) Ep ∼= OX0,p ⊕ mp. In the first case E = ν∗(F ),
where F is a vector bundle of rank 2 on X with det(F ) ∼= ωX , that is, SUX(2, ω, 8) 6= ∅. Note that

h0
(
X,det(F )

)
= 12 ≤ 2h0(X,F )− 4,

implying that F has a subpencil A ↪→ F . Then A ∈ W 1
7 (X) and L := ωX ⊗ A∨ ∈ W 5

15(X) is such
that φL : Sym2H0(X,L) → H0(X,L⊗2) is not surjective. This is ruled out by the definition ofM]

13.
In case (ii), when Ep ∼= OX0,p ⊕mp, one has an exact sequence

0 −→ E −→ ν∗(F̃ ) −→ K(p) −→ 0,

where F̃ = ν∗(E)/Torsion is a vector bundle on the smooth curve X and satisfies det(F ) = ωX(y),
or det(F ) ∼= ωX(q), see also [Su, 1.2]. Observe that also in this case F necessarily carries a subpencil,
and we argue as before to rule out this possibility.

We now turn out to the last part of Proposition 7.2. Choose [X,E] ∈ SU ]13(2, ω, 8) and assume
for simplicity X is smooth (the case when X is 1-nodal being similar). Assume E is not globally
generated at a point q ∈ X . Then there exists a vector bundle F ∈ SUX(2, ω(−q), 8), obtained from
F by an elementary transformation at q. Note that h0

(
X,det(F )

)
≤ 2h0(X,F )− 4, which forces F to

have a subpencil A ↪→ F . Necessarily, deg(A) = 7. Since h0(F ) = h0(A) + h0
(
ωX ⊗A∨(−q)

)
, setting

L := ωX ⊗A∨ ∈W 6
17(X), it follows that the multiplication map

H0(X,L)⊗H0(X,L(−q))→ H0
(
X,L⊗2(−q)

)
is not surjective, and in particular the map Sym2H0(X,L) → H0(X,L⊗2) is not surjective either.
Then X possesses a stable rank 2 vector bundle with canonical determinant and 9 = h0(X,A) +
h0(X,L) sections, which is not the case. �
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Let us consider the universal genus 13 curve

℘ : C]13 → SU
]
13(2, ω, 8),

then let E be the universal rank two bundle over SU ]13(2, ω, 8). Note that we can normalize E is such
a way that det(E) ∼= ω℘.

Definition 7.3. We define the tautological class γ := ℘∗
(
c2(E)

)
∈ CH1

(
SU ]13(2, ω, 8)

)
.

We aim to determine the push-forward toM]
13 of the class γ in terms of λ and δ0. To that end, we

begin with the following:

Proposition 7.4. The push-forward ℘∗(E) is a locally free sheaf of rank 8 and

c1
(
℘∗(E)

)
= ϑ∗(λ)− γ

2
∈ CH1

(
SU ]13(2, ω, 8)

)
.

Proof. The fact that ℘∗(E) is locally free follows from [Ha]. We apply Grothendieck-Riemann-Roch
to the curve ℘ : C]13 → SU

]
13(2, ω, 8) and to the vector bundle E to obtain:

ch
(
℘!(E

)
= ℘∗

[(
2 + c1

(
E) +

c21(E)− 2c2(E)

2
+ · · ·

)
·
(

1−
c1(Ω1

℘)

2
+
c21(Ω1

℘) + c2(Ω1
℘)

12
+ · · ·

)]
.

We consider the degree one terms in this equality. Using [HM, page 49], observe that

c1(Ω1
℘) = c1(ω℘) and ℘∗

(c21(Ω1
℘) + c2(Ω1

℘)

12

)
= ϑ∗(λ).

By Serre duality, observe that R1℘∗(E) ∼= ℘∗(E)∨, therefore one can write:

2c1(℘∗(E)) = c1(℘∗(E))− c1(R1℘∗(E)) = 2ϑ∗(λ)− 1

2
℘∗
(
c21(ω℘)

)
+

1

2
℘∗
(
c21(ω℘)

)
− γ,

which leads to the claimed formula. �

In view of our future applications toR13, we introduce the rank 6 vector bundle

ME := Ker
{
℘∗(℘∗(E))→ E

}
.

The fibre ME :=ME[X,E] over a point [X,E] ∈ SU ]13(2, ω, 8) sits in an exact sequence

(31) 0 −→ME −→ H0(X,E)⊗OX
ev−→ E −→ 0.

Proposition 7.5. The following formulas hold: c1
(
ME

)
= ℘∗

(
ϑ∗(λ)− γ

2

)
− c1(ω℘) and

c2
(
ME

)
= ℘∗c2(℘∗E)− c2(E)− c1(ω℘) · ℘∗

(
ϑ∗(λ)− γ

2

)
+ c21(ω℘).

Proof. This follows from the splitting principle applied toME, coupled with Proposition 7.4. �

7.2. The resonance divisor in genus 13. A general curve X of genus 13 has 3 stable vector bundles
E ∈ SUX(2, ω, 8). In this case h0

(
X,det(E)

)
= 2h0(X,E)−3, which implies that requiringE to carry

a subpencil defines a divisorial condition on the moduli space SU13(2, ω, 8) and thus onM13. For a
vector bundle E ∈ SUX(2, ω), we denote its determinant map by

d :

2∧
H0(X,E)→ H0(X,ωX).

Definition 7.6. The resonance divisor Res]13 is the locus of curves [X] ∈M]
13 for which

G
(
2, H0(X,E)

)
∩ P
(
Ker(d)

)
6= ∅,

for some vector bundle E ∈ SUX(2, ω, 8). In other words, Res]13 is the locus of [X] for which there
exists an element 0 6= a ∧ b ∈

∧2
H0(X,E) such that d(a ∧ b) = 0.
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We set Res13 := Res]13 ∩M13. Note that Res]13 comes with an induced scheme structure under
the proper map ϑ : SU ]13(2, ω, 8) → M]

13. The points in Res]13 correspond to those curves X for
which a vector bundle E ∈ SUX(2, ω, 8) carries a subpencil (which is generated by the sections
a, b ∈ H0(X,E) with d(a∧ b) = 0). The class [Res]13] can be computed in terms of certain tautological
classes over SU ]13(2, ω, 8). On the other hand, we have a geometric characterization of points in
Res13, and it turns out that the resonance divisor coincides with D13 away from the heptagonal locus
M1

13,7.

Proof of Theorem 1.7. We show that one has the following equality of effective divisors

Res13 = D13 + 3 · M1
13,7

onM13. Indeed, let us assume [X] ∈ Res13 \ M1
13,7 and let E ∈ SUX(2, ω, 8) be the vector bundle

which can be written as an extension

(32) 0 −→ A −→ E −→ ωX ⊗A∨ −→ 0,

where h0(X,A) ≥ 2. Since gon(X) = 8, and since 8 ≤ h0(X,E) ≤ h0(X,A) + h0(X,ωX ⊗ A∨), it
follows that A ∈ W 1

8 (X) and L := ωX ⊗ A∨ ∈ W 5
16(X). If such an extension exists, then the map φL

is not surjective, therefore [X] ∈ D13.
Conversely, if [X] ∈ D13, there is some L ∈ W 5

16(X) such that the multiplication map φL is not
surjective. For [X] a general point of an irreducible component of D13, we may assume that the
multiplication map φL has corank 1, for else ϕL : X ↪→ P5 lies on a (2, 2, 2) complete intersection
in P5, which is a (possibly degenerate) K3 surface. But the locus of curves [X] ∈ M13 lying on a
(possibly degenerate) K3 surface cannot exceed g + 19 = 32 < 3g − 4, a contradiction. We let

E ∈ P
(
Ext1(L, ωX ⊗ L∨)

)
be the unique vector bundle with h0(X,E) = h0(X,L) + h0(X,ωX ⊗ L∨) = 8. The argument of
Proposition 6.2 shows that E is stable, otherwise there would exist an effective divisor M of degree
4 on X such that L(−M) ∈ W 3

12(X). Since ρ(13, 3, 12) = −3, the locus of curves [X] ∈ M13 with
W 3

12(X) 6= ∅ has codimension at least three in M13, hence this situation does not occur along a
component of D13. Summarizing, away from the divisorM1

13,7, the divisors Res13 and D13 coincide.

We now show that M1
13,7 appears with multiplicity 3 inside Res13. Let X be a general 7-gonal

curve of genus 13 and letA ∈W 1
7 (X) denote its (unique) degree 7 pencil. SetL := ωX⊗A∨ ∈W 6

17(X).
Each vector bundle E ∈ SUX(2, ω, 8) that has a subpencil appears as an extension

(33) 0 −→ A −→ E
j−→ L −→ 0.

In this case h0(X,E) = h0(X,A)+h0(X,L)−1. That is, V := Im
{
H0(E)

j→ H0(L)
}

is 6-dimensional.
Furthermore, the multiplication map

µV : V ⊗H0(X,L)→ H0(X,L⊗2)

is not surjective. Conversely, each 6-dimensional subspace V ⊆ H0(X,L) such that µV is not surjec-
tive leads to a vector bundle E ∈ P

(
Ext1(L,A)

)
with h0(X,E) = 8. The corresponding bundle E is

stable unless V is of the form H0(X,L(−p)) for a point p ∈ X , in which case E can also be realized
as an extension

0 −→ L(−p) −→ E −→ A(p) −→ 0.

To determine the number of such subspaces V ⊆ H0(X,L), we consider the projective space
P6 := P

(
H0(X,L)∨

)
and consider the vector bundle A on P6 with fibre

A(V ) =
V ⊗H0(X,L)∧2

V

over a point [V ] ∈ P6. There exists a bundle morphism µ : A → H0(X,L⊗2)⊗OP6 given by multipli-
cation and the subspaces [V ] ∈ P6 for which µV is not surjective (or, equivalently, µ∨ is not injective)
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are precisely those lying in the degeneracy locus of µ, that is, for which rk(µ(V )) = 21. Applying the
Porteous formula we find

[Z21(µ)] = c6

(
H0(X,L⊗2)∨ ⊗OP6 −A∨

)
= c6(−A).

To compute the Chern classes of A, we recall that via the Euler sequence the rank 6 vector bundle
MP6 on P6 with MP6(V ) = V ⊆ H0(X,L) can be identified with ΩP6(1). Then A is isomorphic to
MP6 ⊗H0(X,L)/

∧2
MP6 . From the exact sequence

0 −→
2∧
MP6 −→

2∧
H0(X,L)⊗OP7 −→MP6(1) −→ 0,

recalling that ctot(MP6) = 1
1+h , where h = c1(OP6(1)), we find ctot

(∧2
MP6

)
= 1+2h

(1+h)7 , therefore

[Z21(µ)] =
[ 1

(1 + h)7
· (1 + h)7

1 + 2h

]
6

=
[ 1

1 + 2h

]
6

= 26 · h6 = 64.

From this, we subtract the excess contribution corresponding to the locus X
|L|
↪→ P6, parametrizing

the subspaces V = H0(X,L(−p)) corresponding to unstable bundles. This locus appears in the class
[Z21(µ)] with a contribution of

c1

(
Ker(µ∨)⊗ Coker(µ∨)−NX/P6

)
= −5c1

(
Ker(µ∨)

)
+ c1

(
A∨|X

)
− c1(NX/P6).

The restriction to X ⊆ P6 of the kernel bundle of µ∨ can be identified with L∨, whereas c1
(
A∨|X

)
=

−2c1
(
MP6|X

)
= 2 deg(L). Furthermore c1

(
NX/P6

)
= 7deg(L) + 2g(X) − 2. All in all, the excess

contribution to [Z21(µ)] coming from X equals

10 deg(L) + 2 deg(L)− 7 deg(L)− 2g(X)− 2 = 5 · 17− 24 = 61.

Therefore, for a general curve [X] ∈ M1
13,7, there are 3 = 64 − 61 vector bundles E ∈ SUX(2, ω, 8)

having A as a subpencil, which finishes the proof. �

We are now in a position to explain how Theorems 1.3 and 1.7 provide enough geometric infor-
mation to determine the push-forward toM]

13 of the class γ.

Proposition 7.7. One has ϑ∗(γ) = 11288
143 λ− 1582

143 δ0 ∈ CH
1(M]

13).

Proof. The divisor Res]13 is defined as the push-forward under ϑ : SU ]13(2, ω, 8) → M]
13 of the locus

where the fibres of the morphism of vector bundles

d :

2∧
℘∗(E)→ ℘∗(ω℘)

contain a rank two tensor in their kernel. To compute the class of this locus, we use Proposition 7.4
in combination with [FR, Theorem 1.1]4:

[Res]13] = 132
(
c1
(
℘∗(ω℘))− 13

4
c1
(
℘∗(E)

))
= 132

(
−9

4
ϑ∗(λ) +

13

8
γ
)
.

Using [HM] we write [M1

13,7] = 6 · (48λ − 7δ0 − · · · ) for the class of the heptagonal locus, while the
class [D̃13] is computed by Theorem 1.4. Since deg(ϑ) = 3, we then find

ϑ∗(γ) =
48

13

(5059

264
λ− 749

264
δ0 +

9

8
λ+

3

132
(48λ− 7δ0)

)
=

1128

143
λ− 1582

143
δ0.

�

4The result in [FR] is stated for a morphism of vector bundles of the form Sym2(E)→ F . An immediate inspection of the
proof shows though that the same formula applies also in the setting of a morphism of the form

∧2(E)→ F .
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7.3. The class of the non-abelian Brill-Noether divisor onM13.
In the introduction, we defined the non-abelian Brill-Noether divisorMP]13 as the locus of curves

[X] ∈M]
13 for which there exists E ∈ SUX(2, ω, 8) such that the map

µE : Sym2H0(X,E)→ H0(X,Sym2E)

is not an isomorphism, or equivalently, the scheme SUX(2, ω, 8) is not reduced. We now compute
the class of this divisor.

Proof of Theorem 1.1. The locusMP]13 is the push-forward under the proper map ϑ of the degeneracy
locus of the following map of vector bundles over SU ]13(2, ω, 8):

Sym2℘∗(E)→ ℘∗
(
Sym2E

)
.

Using Grothendieck-Riemann-Roch for ℘ : C]13 → SU
]
13(2, ω, 8), we compute

c1

(
p∗(Sym2E)

)
= ℘∗

[(
3 + 3c1

(
E) +

5c21(E)− 8c2(E)

2

)
·
(

1−
c1(Ω1

℘)

2
+
c21(Ω1

℘) + c2(Ω1
℘)

12

)]
2
.

Using again that 12℘∗

(
c21(Ω1

℘) + c2(Ω1
℘)
)

= ϑ∗(λ), we conclude that

c1

(
℘∗(Sym2E)

)
= 3ϑ∗(λ) + ℘∗

(
c21(ω℘)

)
− 4γ = ϑ∗

(
15λ− δ0

)
− 4γ.

Via Proposition 7.4, we have c1
(
Sym2℘∗(E)

)
= 9c1

(
℘∗(E)

)
= 9
(
ϑ∗(λ)− γ

2

)
, yielding

[MP]13] = ϑ∗

(
c1
(
℘∗(Sym2E)− Sym2℘∗(E)

))
= 3(6λ− δ0) +

ϑ∗(γ)

2
.

Substituting via Proposition 7.7, we find [MP]13] = 1
143

(
8218 λ− 1220 δ0

)
. �

8. THE KODAIRA DIMENSION OF R13.

We turn our attention to showing that the Prym moduli spaceR13 is a variety of general type. We
begin by recalling basics on the geometry of the moduli of Prym variety, referring to [FL] for details.
We denote by Rg := Mg

(
BZ2

)
the Deligne-Mumford stack of Prym curves of genus g classifying

triples [Y, η, β], where Y is a nodal curve of genus g such that each of its rational components meets
the rest of the curve in at least two points, η ∈ Pic0(Y ) is a line bundle of total degree 0 such that
η|R = OR(1) for every rational component R ⊆ Y with

∣∣R ∩ Y \R∣∣ = 2 (such a component is
called exceptional), and β : η⊗2 → OY is a morphism generically non-zero along each non-exceptional
component of Y . LetRg be the coarse moduli space of Rg . One has a finite cover

π : Rg →Mg.

8.1. The boundary divisors of Rg . The geometry of the boundary of Rg is described in [FL] and
we recall some facts. If [Xyq = X/y ∼ q] ∈ ∆0 ⊆ Mg is such that [X, y, q] ∈ Mg−1,2, denoting by
ν : X → Xyq the normalization map, there are three types of Prym curves in the fibre π−1

(
[Xyq]

)
.

First, one can choose a non-trivial 2-torsion point η ∈ Pic0(Xyq). If ν∗(η) 6= OX , this amounts to
choosing a 2-torsion point ηX ∈ Pic0(X)[2] \ {OX} together with an identification of the fibres ηX(y)
and ηX(q) at the points y and q respectively. As we vary [X, y, q], points of this type fill-up the
boundary divisor ∆

′

0 in Rg . The Prym curves corresponding to the situation ν∗(η) ∼= OX fill-up the
boundary divisor ∆

′′

0 . Finally, choosing a line bundle ηX on X with η⊗2
X
∼= OX(−y − q) leads to

a Prym curve [Y := X ∪y,q R, η, β], where R is a smooth rational curve meeting X at y and q and
η ∈ Pic0(Y ) is a line bundle such that η|X = ηX and η|R = OR(1). Points of this type fill-up the
boundary divisor ∆ram

0 ofRg .
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Denoting by δ
′

0 := [∆
′

0], δ
′′

0 := [∆
′′

0 ] and δram
0 := [δram

0 ] the corresponding divisor classes, one has
the following relation in CH1(Rg), see [FL]:

π∗(δ0) = δ
′

0 + δ
′′

0 + 2δram
0 .

The finite morphism π : Rg →Mg being ramified only along the divisor ∆ram
0 , one has

(34) KRg = 13λ− 2(δ
′

0 + δ
′′

0 )− 3δram
0 − 2

b g2 c∑
i=1

(δi + δg−i + δi:g−i)− (δ1 + δg−1 + δ1:g−1),

where π∗(δi) = δi + δg−i + δi:g−i, see [FL, Theorem 1.5] for details.

8.2. The universal theta divisor onR13.
For a semistable vector bundle E ∈ SUX(2, ω) on a smooth curve X of genus g, its Raynaud theta

divisor ΘE :=
{
ξ ∈ Pic0(X) : H0(X,E ⊗ ξ) 6= 0

}
is a 2θ-divisor inside the Jacobian of X , see [Ray].

Definition 8.1. The universal theta divisor Θ13 onR13 is defined as the locus of smooth Prym curves
[X, η] ∈ R13 for which there exists a vector bundle E ∈ SUX(2, ω, 8) such that H0(X,E ⊗ η) 6= 0.

We first show that, as expected, this definition gives rise to a divisor onR13.

Proposition 8.2. For a general Prym curve [X, η] ∈ R13 one hasH0(X,E⊗η) = 0 for allE ∈ SUX(2, ω, 8).
It follows that Θ13 is an effective divisor onR13.

Proof. Consider the subvariety ofR13 ×M13
SU13(2, ω, 8)

Z :=
{

[X, η,E] : H0(X,E ⊗ η) 6= 0
}
.

Assume for contradiction that Z surjects onto R13. Then Z is a union of irreducible components
of R13 ×M13

SU13(2, ω, 8). In particular Z surjects onto the irreducible variety SU13(2, ω, 8); see
Corollary 6.3. Therefore, for every pair [X,E] ∈ SU13(2, ω, 8), there exists a 2-torsion point η ∈
Pic0(X) with H0(X,E ⊗ η) 6= 0.

We now specialize to the case when E is a strictly semistable bundle of the type

E = A⊗3 ⊕ (ωX ⊗A⊗(−3)),

where [X,A] is a general tetragonal curve of genus 13. Note that h0(X,A⊗3) = 4, by [CM, Propo-
sition 2.1]. In particular h0(X,E) = 8. Using [BF2] the space R13 ×M13 M1

13,4 parametrizing Prym
curves over tetragonal curves of genus 13 is irreducible, therefore H0

(
X,A⊗3⊗η) 6= 0 for every triple

[X, η,A] ∈ R13 ×M13
M1

13,4. We now further specialize the tetragonal curve X to a hyperelliptic
curve and A = A0(x+ y), where A0 ∈W 1

2 (X) and x, y ∈ X are general points, whereas

η = OX(p1 + p2 + p3 + p4 − q1 − q2 − q3 − q4) ∈ Pic0(X)[2],

with p1, . . . , p4, q1, . . . , q4 being mutually distinct Weierstrass points ofX . It immediately follows that
for these choices H0

(
X,A⊗3 ⊗ η

)
= 0, which is a contradiction. �

We consider the open substack R]13 := π−1(M]
13) of R13 and identify CH1(R]13) with the space

Q〈λ, δ′0, δ
′′

0 , δ
ram
0 〉. In what follows we extend the structure on the universal theta divisor Θ13 to R]13

and realize it as the push-forward of the degeneracy locus of a map of vector bundles of the same
rank over the fibre product

RSU ]13(2, ω, 8) := R]13 ×M]
13
SU ]13(2, ω, 8).

We start with a triple [X, η,E] ∈ RSU ]13(2, ω, 8). Via Proposition 7.2 the vector bundleE is globally
generated and we letME := Ker

{
H0(X,E)⊗OX → E

}
. By tensoring with η and taking cohomology

in the exact sequence (31), we observe that H0(X,E ⊗ η) 6= 0 if and only if the coboundary map

(35) υ : H1
(
X,ME ⊗ η

)
→ H0(X,E)⊗H0(X,ωX ⊗ η)∨



40 G. FARKAS, D. JENSEN, AND S. PAYNE

is not injective. Since clearly H0(X,ME ⊗ η) = 0, it follows that

h1(X,ME ⊗ η) = −deg(ME) + 6(g − 1) = 96 = 8 · 12 = h0(X,E) · h0(X,ωX ⊗ η).

That is, υ is a map between vector space of the same dimension.
By slightly abusing notation, we still denote by

℘ : RC]13 → RSU
]
13(2, ω, 8)

the universal curve of genus 13 overRSU ]13(2, ω, 8). It comes equipped with a universal rank 2 vector
bundle E such that

∧2
E ∼= ω℘ and ℘∗(E) is locally free of rank 8 (cf. Proposition 7.4), as well as with

a universal Prym line bundle Lwith L|℘−1([X,η,E])
∼= η, for any point [X, η,E] ∈ RSU ]13(2, ω, 8).

We consider the rank 6 vector bundleME onRC]13 defined by the exact sequence

0 −→ME −→ ℘∗
(
℘∗E

)
−→ E −→ 0,

then introduce the following sheaves overRSU ]13(2, ω, 8):

A := R1℘∗
(
ME ⊗ L

)
and B := ℘∗(E)⊗ ℘∗

(
ω℘ ⊗ L

)∨
.

Both A and B are locally free of the same rank 96, and there exists a morphism

(36) υ : A → B

whose fibre restrictions are the maps (35). Recall that the forgetful map ϑ : RSU ]13(2, ω, 8) → R]13 is
generically finite of degree 3. We denote by Θ]

13 the push-forward to R]13 of the degeneracy locus of
the morphism υ given by (36). Observe that Θ]

13 ∩M13 = Θ13.

Theorem 8.3. The class of the universal theta divisor Θ]
13 onR13 is given by[

Θ]
13

]
=

1

143

(
10430 λ− 1582 (δ

′

0 + δ
′′

0 )− 5899

2
δram
0

)
∈ CH1

(
R]13

)
.

Proof. From Proposition 8.2 it follows that υ is generically non-degenerate, therefore

[Θ]
13] = c1

(
B −A).

Computing the class c1(B) is straightforward. We find that c1
(
℘∗(ω℘ ⊗ L

))
= ϑ∗

(
λ − δram0

4

)
, using

[FL, Proposition 1.7]. Then via Proposition 7.4, we compute

c1(B) = 12c1
(
℘∗E

)
− 8c1

(
℘∗(ω℘ ⊗ L)

)
= 12

(
ϑ∗(λ)− γ

2

)
− 8
(
ϑ∗
(
λ− δram

0

4

))
= ϑ∗

(
4λ+ 2δram

0

)
− 6γ.

To determine c1(A) we apply Grothendieck-Riemann-Roch to the morphism ℘:

ch
(
℘!(ME ⊗ L)

)
= ℘∗

[(
6 + c1(ME ⊗ L) +

c21(ME ⊗ L)− 2c2(ME ⊗ L)

2
+ · · ·

)
·
(

1−
c1(Ω1

℘)

2
+
c21(Ω1

℘) + c2(Ω1
℘)

12
+ · · ·

)]
.(37)

Observe by direct calculation that the following formulas hold:

c1(ME ⊗ L) = c1(ME) + 6c1(L), c2(ME ⊗ L) = c2(ME) + 5c1(ME) · c1(L) + 15c21(L),

therefore

℘∗

(c21(ME ⊗ L)− 2c2(ME ⊗ L)

2

)
= ℘∗

(c21(ME)− 2c2(ME)

2
+ c1(ME) · c1(L) + 3c21(L)

)
= γ − 1

2
℘∗(c

2
1(ω℘)) = γ − 1

2

(
ϑ∗
(
12λ− δ

′

0 − δ
′′

0 − 2δram
0

))
,

where in the last formula we have used Proposition 7.5, Mumford’s formula [HM] for the class
℘∗(c

2
1(ω℘)), and 2℘∗

(
c21(L)

)
= −ϑ∗(δram

0 ); see [FL, Proposition 1.6].
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Substituting in the equation (37), coupled with Proposition 7.5 and also using that via the push-
pull formula ℘∗

(
℘∗(ϑ∗(λ)− γ

2 ) · c1(ω℘)
)

= (g − 1) ·
(
ϑ∗(λ)− γ

2

)
, we obtain

c1(A) = −7γ + ϑ∗(6λ+
3

2
δram
0 ).

Putting everything together we find

[Θ]
13] = ϑ∗c1(B −A) = ϑ∗

(
γ − 2λ+

δram
0

2

)
= 2ϑ∗(γ)− 6λ+

3

2
δram
0 .

Finally Proposition 7.7 gives 143 ϑ∗(γ) = 11288λ− 1582(δ
′

0 + δ
′′

0 + 2δram
0 ) and the conclusion follows.

�

We can now complete the proof thatR13 is of general type.

Proof of Theorem 1.2. It is shown in [FL, Theorem 6.1] that any g pluricanonical forms defined on Rg
automatically extend to any resolution of singularities, therefore Rg is of general type if and only if
the canonical class KRg is big. To that end, we shall use apart from the closure Θ13 of the universal
theta divisor, the divisor D13:2 onR13 consisting of pairs [X, η] where the 2-torsion point η lies in the
divisorial difference variety

X6 −X6 =
{
OX(D − E) : D,E ∈ X6

}
⊆ Pic0(X).

It is shown in [FL, Theorem 0.2] that up to a positive rational constant, the closure of D13:2 insideR13

is given by [D13:2] = 19λ − 3(δ
′

0 + δ
′′

0 ) − 13
4 δ

ram
0 − · · · ∈ CH1(R13). We then consider the following

effective divisor onR13:

D :=
65

674
[Θ13] +

1153

3707
[D13:2] =

4362

337
λ− 2(δ

′

0 + δ
′′

0 )− 3δram
0 −

12∑
i=1

aiδi −
6∑
i=1

ai,13−iδi:13−i.

By a simple argument using pencils on K3 surfaces, one can show that each of the coefficients
a1, . . . , a12 or a1,12, . . . , a6,7 is at least equal to 3, see [FL, Proposition 1.9]. Since 4362

337 = 12.943... < 13,
comparing the class of D to the one of KR13

given in (34), we conclude that KR13
can be written as a

positive combination of [D] and a multiple of λ, hence it is big. �

8.3. The Kodaira dimension ofM13,n. We indicate how our results on divisors onM13 can be used
to determine the Kodaira dimension of the moduli spaceM13,n.

Proof of Theorem 1.6. It suffices to show thatM13,9 is of general type to conclude that the same holds
for M13,n when n ≥ 10. We use the divisor D13:24,15 considered by Logan [Log] and defined
as the S9-orbit (under the action permuting the marked points) of the locus of pointed curves
[X, p1, . . . , p9] ∈M13,9 such that

h0
(
X,OX(2p1 + · · ·+ 2p4 + p5 + · · ·+ p9)

)
≥ 2.

Up to a positive constant the class of the closure inM13,9 of D13:24,15 equals

[D13:24,15 ] = −λ+
17

9

9∑
i=1

ψi −
25

6
δ0:2 − · · · ∈ CH1(M13,9).

(See [F] or [Log] for the standard notation on the generators of CH1(Mg,n).) If π : M13,9 → M13

is the map forgetting the marked points, a routine calculation shows that the canonical class KM13,9

can be expressed as a positive linear combination of [D13:24,15 ] and π∗([D]), where D ∈ Eff(M13) if
and only if 2s(D)− 9

17 < 13. Observe that the class of the non-abelian Brill-Noether divisor [MP13]
verifies this inequality, and the result follows. �
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[FR] G. Farkas and R. Rimányi, Quadric rank loci on moduli of curves and K3 surfaces, Annales Scientifiques de L’Ecole

Normale Superieure 53 (2020), 945–992.
[FV] G. Farkas and A. Verra, Prym varieties and moduli of polarized Nikulin surfaces, Advances in Math. 290 (2016), 314–328.
[HMo] J. Harris and I. Morrison, Slopes of effective divisors on the moduli space of curves, Inventiones Math. 99 (1990), 321–355.
[HM] J. Harris and D. Mumford, On the Kodaira dimension ofMg , Inventiones Math. 67 (1982), 23–88.
[HT] J. Harris and L. Tu, Chern numbers of kernel and cokernel bundles, Inventiones Math. 75 (1984), 467–475.
[Ha] R. Hartshorne, Stable reflexive sheaves, Mathematische Annalen 254 (1980), 121–176.
[JP1] D. Jensen and S. Payne, Tropical independence I: Shapes of divisors and a proof of the Gieseker-Petri theorem, Algebra

Number Theory 8 (2014), 2043–2066.
[JP2] D. Jensen and S. Payne, Tropical independence II: The maximal rank conjecture for quadrics, Algebra Number Theory 10

(2016), 1601–1640.
[Kh] D. Khosla, Moduli spaces of curves with linear series and the Slope Conjecture, arXiv:0704.1340.
[LN] H. Lange and M. S. Narasimhan, Maximal subbundles of rank two vector bundles on curves, Math. Annalen 266 (1983),

55–72.
[LNP] H. Lange, P. Newstead and S. Park Nonemptiness of Brill–Noether Loci in M(2,K), Communications in Algebra, 44

(2016), 746–767.
[Laz] R. Lazarsfeld, Brill-Noether-Petri without degenerations, J. of Diff. Geometry 23 (1986), 299–307.
[Log] A. Logan, The Kodaira dimension of moduli spaces of curves with marked points, American Journal of Math. 125 (2003),

105–138.
[Mu1] S. Mukai, Curves, K3 surfaces and Fano manifolds of genus≤ 10, in: Algebraic Geometry in honor of M. Nagata (1988),

367–377.
[Mu2] S. Mukai, Non-Abelian Brill-Noether theory and Fano 3-folds, Sugaku 49 (1997), 1–24, alg-geom/9704015.
[Ne] P. Newstead, Characteristic classes of stable bundles of rank 2 over an algebraic curve, Transactions of the American Math.

Soc. 169 (1972), 337–345.
[Ray] M. Raynaud, Sections des fibrés vectoriels sur une courbe, Bull. Soc. Math. France 110 (1982), 103–125.
[Su] X. Sun, Moduli spaces of SLr bundles on singular irreducible curves, Asian Journal of Math. 7 (2003), 609–626.
[Ta] S.-L. Tan, On the slopes of the moduli spaces of curves, International J. of Math. 9 (1998), 119–127.
[T1] M. Teixidor i Bigas, Rank two bundles with canonical determinant, Mathematische Nachrichten 265 (2004), 100–106.
[T2] M. Teixidor i Bigas, Petri map for rank two bundles with canonical determinant, Compositio Math. 144 (2008), 705–720.



THE NON-ABELIAN BRILL-NOETHER DIVISOR ONM13 AND THE KODAIRA DIMENSION OF R13 43

[Th] M. Thaddeus, Conformal field theory and the cohomology of the moduli space of stable bundles, Journal of Differential
Geometry 35 (1992), 131–149.

[Ve] A. Verra, The unirationality of the moduli space of curves of genus≤ 14, Compositio Mathematica 141 (2005), 1425–1444.
[Vo] C. Voisin, Sur l’application de Wahl des courbes satisfaisant la condition de Brill-Noether-Petri, Acta Mathematica 168

(1992), 249-262.
[Zh] N. Zhang, Towards the Bertram-Feinberg-Mukai Conjecture, J. of Pure and Applied Algebra 220 (2016), 1588–1654.
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