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Abstract. We generalize the Embedding Theorem of Eisenbud–Harris from classical Brill–Noether
theory to the setting of Hurwitz–Brill–Noether theory.

More precisely, in classical Brill–Noether theory, the embedding theorem states that a general
linear series of degree d and rank r on a general curve of genus g is an embedding if r ≥ 3. If
f ∶C → P1 is a general cover of degree k, and L is a line bundle on C, recent work of the authors
shows that the splitting type of f∗L provides the appropriate generalization of the pair (r, d) in
classical Brill–Noether theory [1, 2, 13, 15].

In the context of Hurwitz–Brill–Noether theory, the condition r ≥ 3 is no longer sufficient to
guarantee that a general such linear series is an embedding. We show that the additional condition
needed to guarantee that a general linear series ∣L∣ is an embedding is that the splitting type of
f∗L has at least three nonnegative parts. This new extra condition reflects the unique geometry of
k-gonal curves, which lie on scrolls in Pr.

1. Introduction

Brill–Noether theory provides the bridge between the classical perspective on curves as subsets
of projective space and the modern theory of abstract curves. Given an algebraic curve C, the line
bundles that could give rise to a degree d explicit realization of C in Pr are parameterized by its
Brill-Noether locus

W r
d (C) ∶= {L ∈ Picd(C) ∣ h0(L) ≥ r + 1}.

For C a general curve, the geometry of W r
d (C) is well-understood by the main theorems of classical

Brill–Noether theory, established in a series of papers from the 1980s [4, 6, 7, 8, 11, 12]. In particular,
W r

d (C) is nonempty if and only if ρ(g, r, d) ∶= g − (r + 1)(g − d + r) satisfies ρ ≥ 0. In this case, the
universal Wr

d has a unique irreducible component Wr
d,BN dominating the moduli spaceMg.

Equipped with a good understanding of the moduli space Wr
d,BN, one can return to the original

motivation and ask finer questions about the map to projective space corresponding to a general
line bundle in Wr

d,BN. The first natural such question is whether a general such line bundle defines
an embedding into projective space, that is, when is it very ample? In their Embedding Theorem
[3, Theorem 1], Eisenbud–Harris show that a general line bundle in Wr

d,BN is very ample if r ≥ 3.

Remark 1.1. In addition to being sufficient, the condition r ≥ 3 is almost necessary. More precisely,
there are only four triples (g, r, d) with r < 3 where the general L ∈ Wr

d,BN is very ample, namely

(g, r, d) ∈ {(0,1,1), (0,2,2), (1,2,3), (3,2,4)}.

In this article, we consider the analogous problem when the curve C is equipped with a fixed
degree k map f ∶C → P1. In this setting, the analogues of Brill–Noether loci are the Brill–Noether
splitting loci, whose definition we now recall. Given a vector e⃗ = (e1, . . . , ek) with e1 ≤ e2 ≤ ⋯ ≤ ek,
we define the vector bundle O(e⃗) ∶=⊕k

i=1OP1(ei). We then define the Brill–Noether splitting locus

W e⃗(C, f) ∶= {L ∈ Pic(C) ∣ f∗L ≃ O(e⃗) or a specialization thereof} .
The expected dimension of W e⃗(C, f) is given by

ρ′(g, e⃗) ∶= g −∑
i,j

max{0, ej − ei − 1}.
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When (C, f) is general, W e⃗(C, f) is nonempty if and only if ρ′(g, e⃗) ≥ 0 [1, 2, 15]. In this case,
when the characteristic of the ground field is 0 or greater than k, the universal W e⃗ has a unique
irreducible component W e⃗

BN dominating the Hurwitz space Hg,k [13]. Our main results determine
when a general line bundle in this component is basepoint free or very ample. (See Remark 1.5 for
the situation when the characteristic is positive but less than or equal to k.)

Theorem 1. A general line bundle (f,L) ∈W e⃗
BN is basepoint free if and only if either ek−1 ≥ 0, or

L ≃ f∗OP1(n) for n ≥ 0.
Theorem 2. A general line bundle in W e⃗

BN is very ample if ek−2 ≥ 0 and r = h0(O(e⃗)) − 1 ≥ 3.
Remark 1.2. As in the original Embedding Theorem, the sufficient condition in Theorem 2 is almost
necessary. We make this precise by giving the necessary and sufficient conditions for very ampleness
in Theorem 8.8.

Taking k sufficiently large, the condition r ≥ 3 in Theorem 2 implies the original Embedding
Theorem of Eisenbud–Harris. In the regime of small k, another condition is needed to capture the
unique geometry of k-gonal curves: The condition involving the number of nonnegative parts of e⃗
reflects the fact that such maps necessarily factor through projective bundles over P1.

Correspondingly, our approach to this problem splits into two parts: One involving the “ample-
ness of the map from the curve to the projective bundle”, and a second involving “ampleness of
the map from the projective bundle to the projective space along the curve”.

More generally, we can completely understand the “degree of ampleness” of the first of these
maps. Recall that a line bundle L on a curve C is called p-very ample if, for every effective divisor
D on C of degree p + 1, we have h0(L(−D)) = h0(L) − (p + 1). Note that a line bundle is 0-very
ample if and only if it is basepoint free, and it is 1-very ample if and only if it is very ample. In
this way, the notion of p-very ampleness is a natural generalization of both basepoint freeness and
very ampleness.

In the setting of curves with a fixed map to P1, it is simpler to study a variant of p-very ampleness
that is relative to the map to P1. Given a cover f ∶C → P1, we say that a divisor D on C is fibral if
D is effective and supported in a fiber of f . We make the following definition.

Definition 1.3. Let f ∶C → P1 be a cover. We say that a line bundle L on C is relatively p-very
ample if, for every fibral divisor D of degree p + 1 on C, we have

h0(L(−D)) = h0(L) − (p + 1).
Similarly, we say that L is birationally relatively p-very ample if the above holds for all but finitely
many fibral divisors D of degree p + 1 on C.

This definition is only useful when p ≤ k−1, since for p ≥ k, there are no degree p+1 fibral divisors.

Theorem 3. Assume p ≤ k−1. A general line bundle in W e⃗
BN is birationally relatively p-very ample

if and only if ek−p ≥ 0.

Theorem 4. Assume p ≤ k−1. A general line bundle inW e⃗
BN is relatively p-very ample if ek−p−1 ≥ 0.

Remark 1.4. Again, the condition in Theorem 4 is almost necessary. We make this precise in
Theorem 7.2, where we give the necessary and sufficient conditions for relative p-very ampleness.

Our proofs proceed by embedded degeneration. We begin in Section 2 by recalling the correspon-
dence between line bundles L ∈W e⃗(C, f) and maps C → PO(e⃗)∨; this extends the correspondence
in classical Brill–Noether theory between line bundles L ∈ W r

d (C) and maps C → PH0(L)∨. Our
theorems can therefore be approached by constructing suitable curves C ⊂ PO(e⃗)∨. This we do
inductively: In Section 3, we explain how to start with a suitable curve

Ck−1 ⊂ PO(−e1,−e2, . . . ,−ek−1) ⊂ PO(e⃗)∨,
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and attach lines and a section to form a certain reducible curve X ⊂ PO(e⃗)∨. Even though the
curve X does not satisfy the necessary properties, we are able to analyze the deformations of X in
Sections 4–8 to show that a suitably general deformation does.

Simply by considering the curves we construct in this manner, we obtain a 6-page “constructive”
proof of Hurwitz–Brill–Noether existence (see Remark 3.2). Even just this result is highly nontrivial:
The original proof by Jensen–Ranganathan of a special case [9] was quite involved, and subsequent
complete proofs have relied on deep results about either tropical geometry [1], intersection theory on
the moduli stack of vector bundles [16], or analogs of the regeneration theorem [13]. Moreover, the
constructive nature of this proof opens up the door to probing many other aspects of the geometry
of k-gonal curves; its usefulness is unlikely to be limited to only the study of ampleness given here.

Remark 1.5 (Characteristic hypotheses). When the characteristic of the ground field is zero or
greater than k, the Hurwitz space Hk,g is irreducible. By contrast, when the characteristic of the
ground field is positive but less than or equal to k, the Hurwitz space Hk,g is not known to be

irreducible. Nevertheless, our proofs show that there exists a component of W e⃗ dominating some
component of the Hurwitz space, in which the statements of the theorems hold. When we say that
f ∶C → P1 is a general cover, we shall mean that it is general in the appropriate component of the
Hurwitz space.

When the characteristic of the ground field is positive but less than or equal to k, the main
theorems of [13] also apply to some component of the Hurwitz space (see [13, Remark 1]). A priori,
this component need not be the same as any of our components in the present paper. Moreover,
the components here need not be the same for different e⃗.

Acknowledgements. During the preparation of this article, D.J. was supported by NSF grant
DMS-2054135, E.L. was supported by NSF grants DMS-1802908 and DMS-2200641, H.L. was
supported by the Clay Research Fellowship, and I.V. was supported by NSF grants DMS-1902743
and DMS-2200655.

2. Preliminaries on projective bundles and splitting types

Throughout, we denote our splitting type by e⃗ = (e1, . . . , ek) with e1 ≤ ⋯ ≤ ek. We write
deg(e⃗) ∶= e1 +⋯ + ek. We define

u(e⃗) ∶= h1(P1,End(O(e⃗))) =∑
i<j

max{0, ej − ei − 1}.

Note that ρ′(g, e⃗) = g − u(e⃗). Let f ∶C → P1 be a degree k, genus g cover, and suppose

f∗L = E ≃ O(e⃗).
Pulling back to C, there is a natural surjection

f∗E = f∗f∗L→ L,
which corresponds to evaluation of sections on a fiber at a point of C. Dualizing, we obtain an
injection

L∨ ↪ f∗E∨

with locally free cokernel. This defines an embedding

(1)

C PE∨

P1

ι

f
π

such that ι∗OPE∨(1) = L. Throughout, we use the subspace convention for projective bundles, so
that π∗OPE∨(1) = E.
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Lemma 2.1. For every t ∈ P1, the fiber f−1(t) is a basis for π−1(t) ≃ Pk−1. Conversely, suppose we
have an embedding ι∶C → PE∨ factoring f , as in (1). If f−1(t) is a basis for π−1(t) for all t ∈ P1,
then f∗ι

∗OPE∨(1) ≃ E.

Proof. To say f−1(t) is a basis for π−1(t) ≃ Pk−1 is to say that the evaluation map

H0(OPE∨(1)∣π−1(t))→ OPE∨(1)∣f−1(t)
is an isomorphism. This in turn is equivalent to saying that the map

E = π∗OPE∨(1)→ f∗ι
∗OPE∨(1)

is an isomorphism at t. □

The bundle E∨ admits a filtration

(2) 0 ⊂ O(−e1) ⊂ O(−e1,−e2) ⊂ ⋯ ⊂ O(−e1,−e2, . . . ,−ek−1) ⊂ O(−e1,−e2, . . . ,−ek−1,−ek) = E∨.
If the splitting type has distinct parts, this filtration is unique (it is the Harder–Narasimhan fil-
tration); otherwise, we choose such a filtration. We define Fi ∶= O(−e1,−e2, . . . ,−ei) to be the ith
bundle above, so (2) becomes

0 ⊂ F1 ⊂ ⋯ ⊂ Fk−1 ⊂ Fk = E∨.
For ease of notation, write Σi ∶= PFi. The above filtration of E∨ gives a sequence of inclusions

Σ1 ⊂ Σ2 ⊂ ⋯ ⊂ Σk−1 ⊂ Σk = PE∨.
We also define

F− ∶= F#{i∶ei<0} ≃ ⊕
i∶ei<0

O(−ei) and F0 ∶= F#{i∶ei≤0} ≃ ⊕
i∶ei≤0

O(−ei).

Projection away from PF− ⊂ PE∨ defines a rational map which we denote pr
−
∶PE∨ ⇢ P(E∨/F−).

The line bundle OPE∨(1) on PE∨ defines a rational map PE∨ ⇢ Pr, where

r + 1 = h0(P1,E) = h0(PE∨,OPE∨(1)) =
k

∑
i=1

max{0, ei + 1}.

This map factors through pr
−
. In particular, the complete linear series ∣L∣∶C → Pr factors as

C PE∨ P(E∨/F−) Pr.ι pr
−

Thus, we break our problem into two parts: First we study the map (pr
−
○ι)∶C → P(E∨/F−). Then

we study P(E∨/F−)→ Pr along the image of the first map. The image of P(E∨/F−)→ Pr is a cone
over P(E∨/F0)↪ Pr, with vertex a linear space which is the image of P(F0/F−).

The definition of (birational) relative very ampleness given in Definition 1.3 is the analog of
(birational) very ampleness for the first map pr

−
○ι. Our first task is, thus, to determine exactly

when L is (birationally) relatively very ample.

3. Overview of inductive strategy

The following theorem is the basis for our inductive strategy to prove the main theorems.

Theorem 3.1. Let k ≥ 1 and let E = O(e⃗). There exists a smooth curve C ⊂ PE∨ of any genus g
such that ρ′(g, e⃗) ≥ 0 (with g = u(e⃗) = 0 when k = 1) satisfying all of the following conditions:

(1) (π∣C)∗O(1)∣C ≃ E,
(2) h1(NC/PE∨) = 0,
(3) the map π∣C ∶C → P1 is general in the Hurwitz space, and
(4) the curve C meets Σk−1 at finitely many points, and does not meet Σk−2.
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Remark 3.2. Combining Lemma 2.1 with Theorem 3.1 parts (1) and (3) gives a short alternative
proof of the existence theorem in Hurwitz–Brill–Noether theory, i.e., that W e⃗(C, f) is non-empty
when ρ′(g, e⃗) ≥ 0.

Our proof of Theorem 3.1 will be by induction on the rank k of E. For the base case, k = 1, the
curve C is the unique section of the P0-bundle PF1; in this case, the genus of C is zero. For k ≥ 2,
we will construct a curve satisfying Theorem 3.1 of arbitrary genus g ≥ u(e⃗).

Write e⃗<k = (e1, e2, . . . , ek−1) for the splitting type of F∨k−1, and choose a direct sum decomposition
E∨ ≃ Fk−1 ⊕O(−ek). (As mentioned in Section 2, if ek > ek−1, then the bundle Fk−1 is canonical;
otherwise we make a choice.) We have an inclusion Σk−1 = PFk−1 ↪ Σk = PE∨ as a divisor. By
induction on k, there exists a smooth curve Ck−1 in Σk−1 of genus u(e⃗<k) satisfying Theorem 3.1.

For the inductive step, for any genus g ≥ u(e⃗), we construct a nodal curve X of arithmetic genus
g as the union of such a curve Ck−1 ⊂ Σk−1, a section Sk corresponding to a choice of splitting
O(−ek)↪ E∨, and a collection of lines connecting Sk to Ck−1. More precisely, define

(3) m ∶= g + 1 − u(e⃗<k).

Choose m general points p1, . . . , pm on Ck−1 over general points t1, . . . , tm in P1. Write qi for the
unique point on Sk over ti, and let Γ ∶= p1 +⋯+pm. We will write Li for the line in the fiber PE∨∣ti
joining pi and qi. Define

X ∶= Ck−1 ∪ Sk ∪L1 ∪⋯ ∪Lm.

By construction, X has arithmetic genus g. The following diagram illustrates X:

X ∶= Ck−1 ∪ Sk ∪ (L1 ∪⋯ ∪Lm)

L1

Lm−1 Lm

Sk

P1

f0

...

Ck−1
Σk−1 p1

pm

q1
qm

t1
tm−1 tm

...

In subsequent sections, we prove that a general deformation of X satisfies Theorem 3.1.

4. The normal bundle of X: smoothing the nodal curve

In this section, we show that there exists a deformation of X smoothing all the nodes. As a
consequence, we obtain Theorem 3.1 parts (1) and (2). Recall that the deformation theory of X in
Σk is controlled by its normal bundle NX ∶= NX/Σk

. For this reason, we now prove several results
on the normal bundle of X restricted to various components.

4.1. The normal bundles of Σk−1 and Sk. We first record some elementary results about the
normal bundles of the two projective subbundles Σk−1 and Sk in Σk. Since these subbundles
correspond to the direct sum decomposition E∨ ≃ Fk−1 ⊕OP1(−ek), we have

NΣk−1
≃ OPE∨(1)∣Σk−1

⊗ π∗OP1(−ek)(4)

NSk
≃ OPE∨(1)∣Sk

⊗ π∗Fk−1 ≃⊕
i<k

OP1(ek − ei).(5)

In particular, since ek ≥ ei for all i ≤ k, we obtain

(6) H1(NSk
) = 0.
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4.2. The normal bundle of Ck−1. The normal bundle exact sequence

(7) 0→ NCk−1/Σk−1
→ NCk−1

→ NΣk−1
∣Ck−1

→ 0,

for Ck−1 ⊂ Σk−1 ⊂ PE∨, allows us to combine results about NΣk−1
with our inductive hypotheses

about Ck−1 ⊂ Σk−1 to deduce information about NCk−1
. By induction we have H1(NCk−1/Σk−1

) = 0
and (π∣Ck−1

)∗OPE∨(1)∣Ck−1
≃ F ∨k−1. Hence combining (4) with the push-pull formula, we have

(π∣Ck−1
)∗NΣk−1

∣Ck−1
≃ F∨k−1(−ek) ≃⊕

i<k

OP1(ei − ek).

In particular, we have

(8) h1(NΣk−1
∣Ck−1
) =∑

i<k

max{0, ek − ei − 1}.

The restricted normal bundle NX ∣Ck−1
is a positive elementary modification of NCk−1

at the points
Γ = p1 + ⋅ ⋅ ⋅ + pm. See [14, Sections 3.1–3.2] for a brief introduction to elementary modifications of
normal bundles. These modifications are described in the following lemma.

Lemma 4.1. The restricted normal bundle NX ∣Ck−1
sits in the exact sequence

(9) 0→ NCk−1/Σk−1
→ NX ∣Ck−1

→ NΣk−1
∣Ck−1
(Γ)→ 0.

Proof. This follows from the normal bundle exact sequence (7) and the fact that each line Li meets
Σk−1 transversely at pi as in [14, Equation (7)]. □

4.3. The normal bundles of the Li. The normal bundle of each component Li ⊂ X is also
simple to describe. Write PE∨ti for the fiber of PE∨ over ti ∈ P1. Then the restricted normal bundle
sits in an exact sequence

(10) 0→ [NLi/PE∨ti
≃ O(1)⊕(k−2)]→ NLi → [NPE∨ti

∣Li ≃ O]→ 0.

Again, the restriction of NX to one of the line components Li is a positive modification of NLi .
Since Ck−1 ∪ Sk meets PE∨ti transversely at pi and qi, we obtain the exact sequence

(11) 0→ [NLi/PE∨ti
≃ O(1)⊕k−2]→ NX ∣Li → [NPE∨ti

∣Li(pi + qi) ≃ O(2)]→ 0.

4.4. Deformations of Ck−1 transverse to Σk−1. In this section we prove the following lemma.

Lemma 4.2. The following map is surjective:

H0(NX)→H0(NΣk−1
∣Ck−1
(Γ)).

Proof. The map factors as

H0(NX)→H0(NX ∣Ck−1
)→H0(NΣk−1

∣Ck−1
(Γ)).

We consider each of the above maps in turn. The second map appears in the long exact sequence
associated to the exact sequence (9). By induction, we have H1(NCk−1/Σk−1

) = 0, and surjectivity
follows.

Next we show that H0(NX)→H0(NX ∣Ck−1
) is surjective. By considering the exact sequence for

restriction to Ck−1:

0→ NX ∣Sk∪L1∪⋯∪Lm(−Γ)→ NX → NX ∣Ck−1
→ 0,

it suffices to show that H1(NX ∣Sk∪L1∪⋯∪Lm(−Γ)) = 0. To see this, restrict further to Sk:

(12) 0→
m

⊕
i=1

NX ∣Li(−pi − qi)→ NX ∣Sk∪L1∪⋯∪Lm(−Γ)→ NX ∣Sk
→ 0.

By (11), we have h1(NX ∣Li(−pi − qi)) = 0. Finally, NX ∣Sk
is a positive modification of NSk

. By (6),
we have H1(NSk

) = 0; hence H1(NX ∣Sk
) = 0. □
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4.5. Smoothing the nodes of X. Recall that if X is a nodal curve and p is a node of X, we
have the exact sequence of sheaves

0→ Np
X ↪ NX

evpÐÐ→ T 1
p → 0,

which plays a crucial role in the deformation theory of X. The sheaf T 1
p is a skyscraper sheaf

supported at p. The subsheaf Np
X of NX corresponds to deformations of X failing to smooth the

node p. Since T 1
p is supported at p, the sheaves NX and Np

X are isomorphic away from p. Likewise,

for any finite subset ∆ of the nodes of X, we can define N∆
X . (When ∆ is the entire singular locus

of X, this sheaf is known as the equisingular normal sheaf, cf. [17, Section 4.7.1].)

Lemma 4.3. For any points p = pi and q = qi, we have

H1(Np,q
X ) = 0.

In particular, there exists a deformation of X smoothing all of the nodes.

Proof. Restriction to the (disconnected) curve Ck−1 ∪ Sk gives an exact sequence

0→
m

⊕
j=1

NX ∣Lj(−pj − qj)→ Np,q
X → Np

X ∣Ck−1
⊕N q

X ∣Sk
→ 0.

Making modifications at each of the points {p1, . . . , pm} except p, the exact sequence of Lemma 4.1
induces the exact sequence

0→ NCk−1/Σk−1
→ Np

X ∣Ck−1
→ NΣk−1

∣Ck−1
(p1 +⋯ + p̂ +⋯ + pm)→ 0.

The subbundle has no higher cohomology by induction (Theorem 3.1(2)). By (8),

h1(NΣk−1
∣Ck−1
) =∑

i≠k

max{0, ek − ei − 1} ≤m − 1.

Since twisting up by a general point pi decreases the h
1 by 1, the quotient has no higher cohomology

as well. Thus H1(Np,q
X ) = 0 as desired.

The vanishing of H1(Np,q
X ) implies that each of the evaluation maps

H0(NX)
evp,qÐÐ→ T 1

p,q

is surjective. A general section of NX therefore smooths all of the nodes of X. □

4.6. Proof of Theorem 3.1 parts (1) and (2). By Lemma 4.3, smooth deformations of the
curve X exist. We will show that a general such deformation C has all of the desired properties in
Theorem 3.1.

Lemma 4.4. Under specialization to f0∶X → P1, the limit of a fiber of f ∶C → P1 is either

● a fiber of f0∶X → P1 over a point t ∉ {t1, . . . , tm}, or
● contained in the fiber of f0 over ti and contains exactly two points on Li.

In particular, the limit of a fibral divisor on C contains at most two points on any Li.

Proof. The limit of a fiber is necessarily supported on a fiber, say over t ∈ P1. If f−10 (t) does not
contain a line, there is nothing to prove. Otherwise, the limit of a fiber contains the points on Ck−1

over t = ti that are in the smooth locus of X, which accounts for k − 2 of the k points of the limit.
Thus the limit of a fiber must contain exactly 2 points on Li. □

Proof of Theorem 3.1 parts (1) and (2). Applying Lemma 4.4, the limit of any fiber of f ∶C → P1

spans the corresponding fiber of PE∨; therefore, the same is true for any fiber of f . Part (1)
therefore follows from Lemma 2.1. Next, the bundle NX is a positive modification of Np,q

X :

(13) 0→ Np,q
X ↪ NX

evp,qÐÐ→ T 1
p,q → 0.
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By considering the long exact sequence in cohomology, and using Lemma 4.3 and the fact that T 1
p,q

is punctual, we see that H1(NX) = 0. By semicontinuity, the same is true for a deformation C of
X, which completes the proof of Theorem 3.1(2). □

Let Hilbk,g(PE∨) be the Hilbert scheme of curves in PE∨ having arithmetic genus g and relative

degree k over P1. Since H1(NX) = 0 by Theorem 3.1(2), we obtain the following.

Corollary 4.5. The curve X ⊂ PE∨ is a smooth point of Hilbk,g(PE∨), and hence lives in a unique
component of Hilbk,g(PE∨).

5. The nodal curve is general

We saw in Corollary 4.5 above that X is contained in a unique component of Hilbk,g(PE∨). In
this section, we will establish Theorem 3.1(3), i.e., we will show that this component dominates
some component of the Hurwitz space Hk,g. (Recall that when the characteristic exceeds k, the
Hurwitz space is irreducible and thus this component dominates the entire Hurwitz space.) Since
covers are determined by their ramification data, this can be done by analyzing the ramification
behavior of a general deformation of X.

Recall that, by the Riemann–Hurwitz formula, a simply branched cover C → P1 has 2g + 2k − 2
branch points when the characteristic is zero or odd. However, when the characteristic is 2, there is
necessarily wild ramification. The generic behavior is that the cover looks locally in a neighborhood
of a ramification point like an Artin-Schreier cover

y2 + y = ω

x
,

for some constant ω (depending on the choice of local coordinate x at the branch point). In this
case the cover has g + k − 1 branch points.

Our goal is thus to show that a general deformation of X is simply branched with general branch
points, and moreover, if the characteristic is 2, then the corresponding constants ω are also general.

By induction, these conditions hold for Ck−1 → P1. We therefore have to check that a general
deformation of X creates the claimed general branching behavior near each ti. Recall from (11)
that NX ∣Li has a quotient NPE∨ti

∣Li(pi + qi). Let x be a local coordinate for P1 at ti, inducing an

isomorphism
NPE∨ti

∣Li(pi + qi) ≃ OLi(pi + qi).
Let s be a global coordinate on Li, so that pi is at s =∞ and qi is at s = 0. Then if σ is a section
of NX whose image in H0(OLi(pi + qi)) is as + b/s + c, the geometry of the first-order deformation
of X corresponding to σ is given by the graph of the image of σ:

(14) x = (as + b/s + c) ⋅ ϵ.
Lemma 5.1. The branch points of (14) occur at

x = (c ± 2
√
ab) ⋅ ϵ.

Furthermore, if the characteristic is 2, then after a change of coordinates, (14) becomes:

y2 + y =
√
ab ⋅ ϵ

x − cϵ .

Proof. The ramification points satisfy dx/ds = (a − b/s2) ⋅ ϵ = 0. Solving for s, we find s = ±
√
b/a;

substituting this into (14), we conclude that (14) is branched at the claimed values of x.
Note that, when the characteristic is 2, there is only one branch point, at x = cϵ. To obtain the

desired equation, we make the change of coordinates:

s =
√

b

a
⋅ (1 + 1

y
) . □
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The key point is that the branching behavior of the corresponding deformation ofX is determined
by the products ab. (Since the ti were already general, the value of c can be absorbed into a shift
of the ti.) The smoothing parameters a and b appearing in (14) are the images of the section σ
in the deformation space T 1

pi ⊕ T 1
qi of the singularities at pi and qi. The parameter ab appearing in

Lemma 5.1 is therefore the image of σ under the quadratic map

(15) H0(NX)→
m

⊕
i=1

T 1
pi ⊕ T 1

qi →
m

⊕
i=1

T 1
pi ⊗ T 1

qi ,

which multiplies the smoothing parameters of the two nodes pi and qi together. Our goal is thus
to show the surjectivity of the quadratic map (15).

The first step is to reduce this problem to the surjectivity of a linear map. By (13), together with
Lemma 4.3, there is a section s ∈ H0(NX) whose image under (15) is nonzero in each component
on the right-hand side. Now suppose

s′ ∈H0(NX ∣Sk∪L1∪⋯∪Lm(−Γ)) = ker[H0(NX)→H0(NX ∣Ck−1
)] ⊂H0(NX).

Then s′ + s has fixed nonzero evaluation in each factor T 1
pi (independent of choice of s′). To show

that (15) is surjective, it therefore suffices to show that such sections s′ can attain any collection
of values in the T 1

qi factors, i.e., to establish the surjectivity of the linear map

H0(NX ∣Sk∪L1∪⋯∪Lm(−Γ))→
m

⊕
i=1

T 1
qi .

By (11), we have H1(NX ∣Li(−pi − qi)) = 0, so considering the long exact sequence in cohomology
associated to (12), we see that NX ∣Sk∪L1∪⋯∪Lm(−Γ) → NX ∣Sk

is surjective on global sections. It
thus suffices to show that H0(NX ∣Sk

) → ⊕m
i=1 T

1
qi is surjective. To see this, recall that we have an

exact sequence

0→ NSk
→ NX ∣Sk

→
m

⊕
i=1

T 1
qi → 0,

and H1(NSk
) = 0 by (6).

6. Intersections with subscrolls

In this section, we prove Theorem 3.1(4). To do so, we first prove the following general fact
about evaluation maps of line bundles.

Lemma 6.1. Let C be a smooth curve, and L a line bundle on C, and D an effective divisor on C,
and ∆ ⊂ L∣D a proper linear subspace. Let Γ be a general set of points on C with #Γ ≥ h1(L) + 1.
Then the image of the evaluation map

H0(L(Γ))→ L∣D
is not contained in ∆.

Proof. Let p ∈ C be a general point. If h0(L) ≠ 0 and the statement holds for L(−p), then it holds
for L as well. Similarly, if h1(L) ≠ 0 and the statement holds for L(p), then it holds for L as well.
We may therefore reduce to the case where h0(L) = h1(L) = 0.

Let A = a1 + ⋯ + an be a general effective divisor on C of the same degree as D. We have an
exact sequence

H0(L(A))→ L∣D →H1(L(A −D)).
We claim that h1(L(A −D)) = 0. Indeed, specializing to the case A = D, we have h1(L) = 0, so
since A is general, the claim follows by semicontinuity.

In particular, the evaluation map H0(L(A)) → L∣D is surjective. For each i, there is a nonzero
section of H0(L(A)) that vanishes on A − ai, and these sections span H0(L(A)). It follows that
there exists an i such that the image of H0(L(ai)) is not contained in ∆. □
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Proof of Theorem 3.1(4). By induction on k, the curve Ck−1 meets Σk−2 at finitely many points,
and does not meet Σk−3. Let p ∈ Ck−1 be one of the finitely many points in the intersection
Ck−1 ∩Σk−2. We show that there is a deformation of X that does not meet Σk−2 in a neighborhood
of p. Since both Σk−2 and Ck−1 are contained in Σk−1, it suffices to show that there exists a section
of NX whose image in NΣk−1

∣p is nonzero. By Lemma 4.2, the map

H0(NX)→H0(NΣk−1
∣Ck−1
(Γ))

is surjective. Now consider the evaluation map

(16) H0(NΣk−1
∣Ck−1
(Γ))→ NΣk−1

∣p.
By construction,

#Γ =m ≥ 1 +∑
i<k

max{0, ek − ei − 1} by (3)

= 1 + h1(NΣk−1
∣Ck−1
) by (8).

Hence, applying Lemma 6.1, we see that (16) is nonzero. The preimage of the zero subspace of
NΣk−1

∣p in H0(NX) is therefore a hyperplane, and a general section of NX separates Ck−1 and Σk−2.
This shows that a general deformation of X does not meet Σk−2.

Since a general deformation of X is irreducible and X is not contained in Σk−1, a general defor-
mation of X meets Σk−1 in finitely many points. □

7. “Relative” ampleness: maps to the nonnegative scroll

In this section, we prove the necessary and sufficient conditions for (birational) relative very
ampleness. We start by proving the statements in the introduction, and then give the full statement
in Section 7.1.

Proof of Theorem 3. The dimension of the span of a fibral divisor under C → Pr is the dimension
of its span in C → PE∨ → P (E∨/F−). It is therefore necessary that the fibers of P (E∨/F−) → P1

have dimension at least p, equivalently that ek−p ≥ 0.
To prove that ek−p ≥ 0 is sufficient, we induct on k. We assume the statement for all k′ < k. Let

X = Ck−1 ∪L1 ∪⋯Lm ∪ Sk

be the degenerate curve constructed in Section 3, and let C be a general deformation of X in PE∨.
Assume that e⃗ has at least p + 1 nonnegative parts. Let (f,L) ∈ W e⃗

BN be general. We will
show that only finitely many fibral divisors D of degree p + 1 satisfy h0(C,L(−D)) ≥ h0(C,L) − p.
Let x be a general point on C. Every component of C ×P1 ⋯ ×P1 C dominates C, and hence
contains a divisor whose support contains x. By upper-semicontinuity, it therefore suffices to show
h0(C,L(−D)) = h0(C,L)− (p+ 1) for every divisor D of the form D′ + x, where D′ is supported in
the same fiber as x.

To establish this, let x0 be a general point on the section Sk, and suppose x specializes to x0.
Every point of X distinct from x0 in the same fiber lies on the component Ck−1, and by induction,
the restriction of L to Ck−1 is birationally relatively (p−1)-very ample. Since x0 is general, it follows
that all divisors D′ of degree p on Ck−1 in the fiber f−10 (f0(x0)) have linear span in P (Fk−1/F−)
that is (p − 1)-dimensional. Since x0 does not lie in P (Fk−1/F−), the linear span of D′ + x0 in
P (E∨/F−) is p-dimensional, and the result follows. □

The remainder of this subsection is devoted to proving Theorem 4. If e⃗ has at least p + 2
nonnegative parts, then e⃗<k has at least p + 1 nonnegative parts. Therefore L∣Ck−1

is birationally
relatively p-very ample by Theorem 3. There are finitely many “bad” fibers containing either a line
Li or a fibral divisor D′ of degree p+1 on Ck−1 with h0(Ck−1,L(−D′)) ≥ h0(Ck−1,L)−p. Any fibral
divisor D of degree p+ 1 on X that is not supported in a bad fiber has linear span in P (E∨/F−) of
dimension p. It therefore suffices to show that no divisor of degree p + 1 supported in a bad fiber
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is a limit of a divisor from C failing to impose independent conditions on L. We split this into two
cases, first considering the fibers that contain a line Li.

Lemma 7.1. Suppose that ek−p−1 ≥ 0. Let D be the limit on X of a fibral divisor of degree p+ 1 on
C whose span in P (E∨/F−) has dimension p − 1 or less. Then D is supported on Ck−1 in a fiber
not containing a line and has span of dimension p − 1.
Proof. Because D contains at most two points on a line by Lemma 4.4, the span of D is equal to
the span of D′ +x0 where x0 is some point on X and D′ is a degree p divisor on Ck−1 (if two points
limit to a line Li, replacing one of them with pi = Ck−1 ∩ Li does not change the span and brings
our divisor to this form). By the inductive hypothesis, the span of D′ in P(Fk−1/F−) has dimension
p − 1. Thus, x0 must already lie in the span of D′. Hence, D is supported on Ck−1.

By Theorem 3, a general fibral divisor of degree p+1 supported on Ck−1 has span in P(Fk−1/F−)
of dimension p. Because the lines are attached in general fibers, D lies in a fiber not containing a
line. □

Proof of Theorem 4. Let D be the limit on X of a fibral divisor of degree p+ 1 on C whose span in
P (E∨/F−) has dimension p−1 or less. By Lemma 7.1, we may assume that D is contained in a fiber
of Ck−1 and has a span of dimension p − 1. By Theorem 3, there are finitely many such divisors,
so it suffices to show that for each one, we can find a deformation of X so that any corresponding
deformation of D has image in P(E∨/F−) of dimension p.

Let V ⊆H0(NX) be the subspace of sections that preserve the property that some corresponding
deformation of D lives in a linear space of dimension p − 1 in P(E∨/F−). We shall show that the
image of V under

(17) H0(NX)→H0(NΣk−1
∣Ck−1
(Γ))→ NΣk−1

∣D
is contained in a proper linear subspace ∆ ⊂ NΣk−1

∣D. Since the first map is surjective (Lemma
4.2), it will then suffice to show that there is a section of NΣk−1

∣Ck−1
(Γ) whose image under the

second map does not lie in ∆ (for which we will use Lemma 6.1).
Because D does not meet PF− (by Theorem 3.1(4)), we know NΣk−1

∣D ≃ NP(Fk−1/F−)/P(E∨/F−)∣D.
Let Λ ⊂ P(E∨/F−) be the span of the image of D under projection from PF−. If a deformation of
D continues to have span in P(E∨/F−) of dimension p− 1, then there would exist a deformation of
Λ that contains it. Therefore the image of V under the composition (17) is necessarily contained
in the image ∆ of

(18) H0(NP(Fk−1/F−)/P(E∨/F−)∣Λ)→ NP(Fk−1/F−)/P(E∨/F−)∣D = NΣk−1
∣D.

Since Λ is contained in a fiber and P(Fk−1/F−) ⊂ P(E∨/F−) is a hyperplane in each fiber, we have
NP(Fk−1/F−)/P(E∨/F−)∣Λ ≃ OΛ(1). Hence, the source of (18) has dimension

h0(NP(Fk−1/F−)/P(E∨/F−)∣Λ) = dimΛ + 1 = p.
On the other hand, D has degree p + 1, so the target of (18) has dimension p + 1. Hence, the
image ∆ ⊂ NΣk−1

∣D of (18) is a proper subspace. Finally, by Lemma 6.1, since Γ is general and
contains m ≥ h1(NΣk−1

∣Ck−1
) + 1 points, there exists a section in H0(NΣk−1

∣Ck−1
(Γ)) that misses

∆ ⊂ NΣk−1
∣D. □

7.1. Necessary and sufficient conditions for relative very ampleness. The following theo-
rem is a stronger version of Theorem 4 from the introduction.

Theorem 7.2. Assume p ≤ k − 1. A general line bundle in W e⃗
BN is relatively p-very ample if and

only if either

(1) ek−p−1 ≥ 0,
(2) p = 0 and ek ≥ 0 and ek−1 − e1 ≤ 1 and ρ′(g, e⃗) = 0,
(3) p = k − 2 and e2 ≥ 0 and ek − e2 ≤ 1 and ρ′(g, e⃗) = 0,
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(4) p = k − 1 and e1 ≥ 0, or
(5) g = 0 and ek−p ≥ 0.

By Theorem 3, the condition ek−p ≥ 0 is necessary, and by Theorem 4, the condition ek−p−1 ≥ 0
is sufficient. We therefore suppose ek−p−1 < 0 ≤ ek−p.

By Theorem 3, there are finitely many fibral divisors of degree p + 1 that fail to be independent
in their fiber of P(E∨/F−) over P1. We shall call these dependent fibral divisors. Below, we use
intersection theory to compute the number N of dependent fibral divisors of degree p + 1, counted
with multiplicity. In particular, when N = 0, there are no dependent fibral divisors of degree p + 1,
so a general L will be relatively p-very ample (instead of just birationally relatively p-very ample).
In other words, in these cases, L is more ample than expected because of a numerical coincidence.

On the other hand, of course, if N ≠ 0, then L cannot be relatively p-very ample. This will prove
the only if direction in Theorem 7.2.

7.1.1. Number of dependent fibral divisors via intersection theory. To perform our intersection the-
ory calculation, we realize the locus of dependent fibral divisors of degree p + 1 as a degeneracy
locus where a map of vector bundles drops rank. Let A be the closure of the complement of the
diagonals in the (p+ 1)-fold fiber product C ×P1 ×⋯×P1 C. Over a point t ∈ P1 that is not a branch
point of f , the fiber of h∶A→ P1 consists of ordered tuples (a1, . . . , ap+1) of p + 1 distinct points in
the fiber of f over t. The map h∶A→ P1 is therefore finite of degree k!/(k − p − 1)!.

If t ∈ P1 is a branch point of f , the fiber of h∶A→ P1 over t consists of tuples (a1, . . . , ap+1) where
ai = aj is a ramification point, for some pair (i, j). Let Z ⊂ A be the locus of points (a1, . . . , ap+1) ∈ A
where the ai fail to be distinct. By Riemann–Hurwitz, the degree of the ramification divisor of f
is 2g − 2 + 2k. It follows that

degZ = (2g − 2 + 2k) ⋅ (p + 1
2
) ⋅ (k − 2)!(k − p − 1)! .

Let πj ∶A→ C be the projection onto the jth factor. Note that degπj = (k − 1)!/(k − p − 1)!. For
each j there is an evaluation map

(19) h∗E = π∗j f∗(f∗L)→ π∗jL.

The fiber of the kernel of (19) over a point (a1, . . . , ap+1) ∈ A is the space of linear forms on the
fiber of PE∨ that vanish on aj ∈ C ⊂ PE∨. Taking the sum of (19) over all j, we obtain a map of
vector bundles

h∗E →
p+1

⊕
j=1

π∗jL

on A whose kernel is the bundle of linear forms on the fibers of PE∨ that vanish on a1, . . . , ap+1.
Recall that we assume E has exactly p+ 1 non-negative parts, which form a canonical rank p+ 1

subbundle. (This subbundle of E is the same as (E∨/F−)∨, which is the space of linear forms on
our projective bundle P(E∨/F−).) The composition

ϕ∶h∗
⎛
⎝ ⊕i≥k−p

O(ei)
⎞
⎠
→ h∗E →

p+1

⊕
j=1

π∗jL

drops rank when there exists a linear form on P(E∨/F−) that vanishes on all of a1, . . . , ap+1. In
other words, detϕ vanishes when a1, . . . , ap+1 are linearly dependent in P(E∨/F−). If ai = aj (so
(a1, . . . , ap+1) ∈ Z), then a1, . . . , ap+1 are automatically dependent. Hence, Z ⊂ V (detϕ). Mean-
while, away from Z, the determinant detϕ vanishes precisely when a1 + . . . + ap+1 is a dependent
fibral divisor. By Theorem 3, there are finitely many dependent fibral divisors, so detϕ vanishes in
the expected codimension. Note also that Theorem 4 ensures a general (f,L) ∈W e⃗

BN is relatively
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(p + 1)-very ample, so there are no dependent fibral divisors of degree p. Thus, the degree of the
scheme of dependent fibral divisors of degree p + 1 is

N = 1

(p + 1)!(deg[V (detϕ)] − degZ)(20)

= 1

(p + 1)!
⎛
⎝

p+1

∑
j=1

degπ∗jL −
k

∑
i=k−p

degh∗O(ei) − degZ
⎞
⎠

= 1

(p + 1)!
((p + 1)(degπi)(degL) − (degh)(ek−p + . . . + ek) − degZ)

= (k − 1
p
)(e1 + . . . + ek + g + k − 1) − (

k

p + 1)(ek−p + . . . + ek) − (g − 1 + k)(
k − 2
p − 1).(21)

7.1.2. The case of no dependent fibral divisors. The edge cases when L is more ample than expected

occur when N = 0. Multiplying (21) by
(p+1)!(k−1−p)!

(k−2)! , the condition N = 0 is equivalent to

(p + 1)(k − 1)(e1 + . . . + ek) + (p + 1)(k − 1 − p)(g + k − 1) = k(k − 1)(ek−p + . . . + ek),
or equivalently,

(p + 1)(k − 1 − p)(g + k − 1) = (k − 1) ((k − p − 1)(ek−p + . . . + ek) − (p + 1)(e1 + . . . + ek−p−1))

= (k − 1)
k−p−1

∑
i=1

⎛
⎝

k

∑
j=k−p

ej − ei
⎞
⎠
.

This in turn means

(22) (p + 1)(k − 1 − p)g = (k − 1)
k−p−1

∑
i=1

⎛
⎝

k

∑
i=k−p

ej − ei − 1
⎞
⎠
≤ (k − 1)u(e⃗) ≤ (k − 1)g.

If g = 0, then all inequalities in (22) are equalities and hence N = 0. Therefore, we have relative
p-very ampleness whenever there are p + 1 nonnegative parts, which is Theorem 7.2(5).

Assume for the remainder that g ≠ 0. Dividing (22) by g, we see that

(23) (p + 1)(k − 1 − p) ≤ k − 1.
There are only three possible values for p where this inequality holds, which translate into Theo-
rem 7.2(2)–(4).

● p = 0. Since equality holds in (23), all inequalities in (22) are actually equalities. Hence,

g = u(e⃗), equivalently ρ′(g, e⃗) = 0. Furthermore, ∑k−1
i=1 ek − ei − 1 = u(e⃗), which implies that

the other parts are balanced, i.e., ek−1 − e1 ≤ 1.
● p = k − 2. Again, equality holds in (23), so all inequalities in (22) are actually equalities.

This gives g = u(e⃗), equivalently ρ′(g, e⃗) = 0. Furthermore, ∑k
i=2 ej − e1 − 1 = u(e⃗), which

implies that the other parts are balanced, i.e., ek − e2 ≤ 1.
● p = k − 1. Our assumption that e⃗ has exactly p + 1 nonnegative parts means e1 ≥ 0.

8. Very ampleness: map to projective space

In this section, we use the complete characterization in Theorem 7.2 of relative p-very ampleness
to prove Theorem 1 and a refined version of Theorem 2 giving necessary and sufficient conditions
for very ampleness.

Proof of Theorem 1. When p = 0, relative 0-very ampleness is equivalent to 0-very ampleness. It
therefore suffices to show that conditions (1)–(5) in Theorem 7.2 are equivalent to Theorem 1.
Conditions (1)–(5) in Theorem 7.2 when p = 0 simplify to

(a) ek−1 ≥ 0, or
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(b) ek ≥ 0 and ek−1 − e1 ≤ 1 and ρ′(g, e⃗) = 0.
(To show that Theorem 7.2(5) reduces to (b) above, note that the pushforward of a line bundle
under any map of genus 0 curves is balanced.)

Finally, suppose that (b) holds and (a) does not, so ek−1 < 0. In this case, we have

h0(L⊗ f∗OP1(−ek)) = 1 and h1(L⊗ f∗OP1(−ek)) =∑
i<k

ek − ei − 1 = u(e⃗) = g.

Hence, L⊗ f∗OP1(−ek) ≅ OC , or equivalently, L ≅ f∗OP1(ek). □

Ordinary p-very ampleness implies relative p-very ampleness, but the converse implication does
not hold for p ≥ 1. Nevertheless, we have the following inductive tool:

Lemma 8.1. For a general (f,L) ∈ W e⃗
BN, the line bundle L is p-very ample (resp. birationally

p-very ample) if both:

● It is relatively p-very ample (resp. birationally relatively p-very ample), and

● For a general (f ′,L′) ∈ W e⃗′

BN where e⃗′ = (e1 − 1, e2 − 1, . . . , ek − 1), the line bundle L′ is
(p − 1)-very ample (resp. birationally (p − 1)-very ample).

Proof. Take any effective divisor D of degree p+ 1, and suppose D nontrivially intersects a fiber F
of the map C → P1. Because L is relatively p-very ample, D ∩ F is in linear general position. It
thus suffices to show that the projection from F of D − (D ∩ F ) is in linear general position. This
follows from the (p − 1)-very ampleness of L′ = L⊗ f∗OP1(−1). □

Remark 8.2. As an immediate consequence of Theorem 1 and Lemma 8.1, we see that for a general
(f,L) ∈W e⃗

BN, the line bundle L is p-very ample if:

ek ≥ p
ek−1 ≥ p
ek−2 ≥ p − 1
⋮

ek−p−1 ≥ 0.
Similarly, for a general (f,L) ∈W e⃗

BN, the line bundle L is birationally p-very ample if:

ek ≥ p
ek−1 ≥ p − 1
⋮

ek−p ≥ 0.
The result in Remark 8.2 is likely far from sharp. Farkas proved [5] that a general line bundle

in the classical Brill–Noether locus Wr
d is p-very ample if r ≥ 2p + 1. We have already shown that

a general line bundle in W e⃗
BN is relatively p-very ample if ek−p−1 ≥ 0, and so the natural conjecture

would be as follows.

Conjecture 8.3. A general line bundle in W e⃗
BN is p-very ample if

ek−p−1 ≥ 0 and r = h0(O(e⃗)) − 1 ≥ 2p + 1.
When p = 1, we prove this conjecture in Theorem 2; in other words, the remainder of the paper

deals with the discrepancy between what we expect by Conjecture 8.3 and what is covered by
Remark 8.2 when p = 1. Note that this discrepancy increases as p increases.

We now give a characterization of birational very ampleness, which will feed into our proof of
Theorem 2.

Lemma 8.4. For (f,L) ∈W e⃗
BN general, L is birationally very ample if and only if
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(1) ek−2 ≥ 0,
(2) ek−1 ≥ 0 and ek ≥ 1, or
(3) g = 0 and ek−1 ≥ 0.

Proof. By Theorem 3, it is necessary that ek−1 ≥ 0. If in addition ek ≥ 1, then a generic line bundle
in W e⃗

BN is birationally very ample by Remark 8.2. On the other hand, if ek−1 = ek = 0 and ek−2 < 0,
then ∣L∣ maps C to P1, and so L is birationally very ample if and only if g = 0.

It remains to consider the case ek−2 ≥ 0. We will use our degeneration introduced in Section 3.
The map X → Pr sends Ck−1 into a proper linear space (with non-zero degree) and sends Sk to
a rational normal curve in a complementary linear space (possibly contracting it to a point if
ek = 0). Since the lines Li are attached at general points of Ck−1, their images in Pr are distinct.
In particular, the map X → Pr is birationally very ample along the lines Li. □

8.1. Proof of Theorem 2. We must prove very ampleness in the following two cases:

(1) When e⃗ has at least four nonnegative parts, none of which are positive.
(2) When e⃗ has at least three nonnegative parts, at least one of which is positive.

8.1.1. At least four parts of degree 0 and no positive parts. Here, we consider splitting types with
ek = ek−1 = ek−2 = ek−3 = 0. We argue by degeneration to the reducible curve X constructed in
Section 3. By our hypothesis on e⃗, we know OPE∨(1)∣Ck−1

is a line bundle whose pushforward has
splitting type with at least three parts of degree 0 (and no positive parts). Thus, by Lemma 8.4(1),
we have that OPE∨(1)∣Ck−1

is birationally very ample on Ck−1. The complete linear system of
OPE∨(1) maps X to Pr with r ≥ 3. This map contracts Sk to a point and sends Ck−1 birationally
onto its image in a complementary hyperplane α∶Ck−1 → Pr−1 ⊂ Pr.

We will show that for a deformation C of X, every degree 2 effective divisor D on C embeds into
Pr. We have two cases to consider:

(1) D limits to a divisor on Ck−1 which is collapsed to a point in Pr−1 ⊂ Pr.
(2) D limits to a divisor on Sk (which is necessarily collapsed to a point in Pr).

Case (1): By inducting on the number of nonnegative parts of e⃗, we may assume e⃗ has exactly
four parts of degree 0, i.e., r = 3. By Lemma 8.4, there are finitely many bad degree 2 effective
divisors D on Ck−1 that are collapsed to a point α(D) ∈ P2 ⊂ P3, so it suffices to show that a general
deformation of X will separate any given bad D. Let M = NΣk−1

∣Ck−1
= OPE∨(1)∣Ck−1

(see (4) in
case ek = 0). We have an identification

M ∣D ≃ α∗NP2/P3 ∣α(D).
A deformation of X separates D in the map to P3 if it does not take values in the subspace

∆ = α∗H0(NP2/P3 ∣α(D)) ⊂H0(α∗NP2/P3 ∣α(D)) =M ∣D.
Thus it suffices to show that the image of

H0(NX)→H0(M(Γ))→M ∣D
does not lie in the subspace ∆. By Lemma 4.2, the first map above is surjective. Since Γ is general
with #Γ ≥ h1(M) + 1, the image of H0(M(Γ))→M ∣D does not lie in ∆ by Lemma 6.1.

Case (2): Every degree 2 divisor D on Sk is collapsed to a point in Pr. By (5) we have a filtration

(24) 0→ ⊕
i≤k−4

O(−ei)→ NSk
→ O⊕3 → 0.

We have that NX ∣Sk
is a positive modification of NSk

. Since Ck−1 does not meet Σk−4 by Theorem
3.1(4), these modifications do not meet the subbundle in (24), i.e., k = 0 in [14, Equation (7)].
Hence, we obtain a filtration

(25) 0→ ⊕
i≤k−4

O(−ei)→ NX ∣Sk
→ Q→ 0,



16 KAELIN COOK-POWELL, DAVID JENSEN, ERIC LARSON, HANNAH LARSON, AND ISABEL VOGT

where Q is a positive modification of O⊕3 at the qi. For i ≤ k − 4, we have ei ≤ 0 by assumption, so
h1(⊕i≤k−4O(−ei)) = 0. Hence, we have a surjection H0(NX ∣Sk

)→H0(Q).
Since a general section in H0(NX) smooths all the qi, and the images of the lines Li are distinct,

it suffices to show that it separates any degree 2 effective divisor D in Sk ∖ {q1, . . . , qm}. For such
D, we have a natural trivialization of Q∣D. If a section in H0(NX) has non-constant image under

H0(NX)→H0(NX ∣Sk
)→H0(Q)→ Q∣D,

then the corresponding deformation separates D. We know H0(NX) → H0(NX ∣Sk
) is surjective

and H0(NX ∣Sk
) → H0(Q) is surjective. Therefore, we wish to show that a general section of Q

misses the constant subspace when evaluated in Q∣D for all degree 2 effective divisors D supported
on Sk ∖ {q1, . . . , qm}.

There is a 2-dimensional family of degree 2 effective divisors D in Sk∖{q1, . . . , qm}. For each such
D, we get a “bad subspace” of H0(Q) defined as the preimage of the constant sections ∆ ⊂ Q∣D
under H0(Q)→ Q∣D. If m ≥ 3, then we claim that all summands of Q are positive. Indeed, because
the pi are general, and the image of Ck−1 in Pr−1 is nondegenerate, the modifications cannot all
lie in a proper trivial subbundle. Then, it is a codimension 3 condition on the space of global
sections H0(Q) to lie in the constant subspace along D. The union of a 2-dimensional family of
codimension 3 “bad subspaces” of H0(Q) cannot be all of H0(Q), so a general section will not lie
in any bad subspace. If m = 1 or m = 2, then NX ∣Sk

has an O(1) summand, and every section that
is non-constant in the O(1) component is non-constant along every D.

8.1.2. At least three nonnegative parts at least one of which is positive. If ek−1 > 0, the result follows
from Remark 8.2; we therefore suppose ek−2 = ek−1 = 0 and b ∶= ek > 0.

Let X = Ck−1 ∪L1 ∪⋯ ∪Lm ∪ Sk ⊂ PE∨ be our degenerate curve. The complete linear series for
OPE∨(1) sends X to Pa+b+1 by sending Ck−1 onto a Pa and Sk onto a degree b rational normal curve
in a complementary Pb. Write α∶Ck−1 → Pa for the restriction of ∣OPE∨(1)∣ to Ck−1. Our goal is
to show that for a general deformation C of X, every degree 2 effective divisor on C embeds into
Pa+b+1. The only degree 2 effective divisors on X that are collapsed to a point in Pa+b+1 are divisors
on Ck−1 that live in a fiber of α∶Ck−1 → Pa.

Let Γ = {p1, . . . , pm} be the points on Ck−1 where the lines L1, . . . , Lm are attached. Write

(26) L ∶= NΣk−1
∣Ck−1

= OPE∨(1)∣Ck−1
⊗ f∗OP1(−ek) = α∗OP1(1)⊗ f∗OP1(−b),

where the second equality follows from (4). By Lemma 4.1 we have NX ∣Ck−1
/(NCk−1/Σk−1

) = L(Γ).
Because b > 0, the map P(E∨/Fk−3) → Pa+b+1 is an embedding away from the codimension 1

subscroll P(Fk−1/Fk−3) ⊂ P(E∨/Fk−3). If a section of NX has image in L(Γ) that does not vanish
along a degree 2 effective divisor D on Ck−1, then the corresponding deformation of X separates D.
Since H0(NX) → H0(L(Γ)) is surjective by Lemma 4.2, it suffices to show that, for general Γ, a
general section of L(Γ) has a vanishing locus which contains no degree 2 effective divisor contained
in a fiber of α.

If ek−3 = 0, then by Lemma 8.4, we know that α∶Ck−1 → Pa is birational onto its image. Thus,
there are finitely many degree 2 effective divisors D on Ck−1 that are collapsed by α. For each such
D, Lemma 6.1 applied to ∆ = 0 ⊂ L∣D shows that a general section of L(Γ) is nonzero on D.

For the remainder, we therefore assume ek−3 < 0, and hence a = 1. If degα = 1, then no degree
2 effective divisor of X is collapsed in the map to Pb+2. We therefore assume for the remainder of
this section that degα ≥ 2. In this case, α∶Ck−1 → P1 collapses infinitely many degree 2 effective
divisors D, making this case more difficult than the previous paragraph.

Throughout, we write g′ ∶= u(e⃗<k) for the genus of Ck−1. If e⃗ = (−1, . . . ,−1,0,0, b), then we have
g′ = u(e⃗<k) = u(−1, . . . ,−1,0,0) = 0, and so degα = g′ − 1+ (k − 1)−deg(e⃗<k) = 1. Thus, we may also
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assume that e1 < −1, and consequently, the quantity m defined in (3) satisfies

(27) m ≥ 1 +∑
j<k

(ek − ej − 1) ≥ 3.

If m ≥ g′, then L(Γ) is a general line bundle, so it has a section with the desired property. We
can therefore assume m < g′ for the remainder. Since we are assuming b > 0, we have

h0(L) = h0(f∗L) = h0 (O(e⃗<k)⊗O(−b)) = 0.
We claim that it suffices to consider the case of minimal m, namely m = h1(L) + 1. Indeed, if
m > h1(L) + 1, let Γ′ ⊂ Γ be a subset of h1(L) + 1 points. Then, if we have treated the case of
minimal m, it follows that a general section in H0(L(Γ′)) ⊂ H0(L(Γ)) has the desired property.
We therefore assume m = h1(L)+1 for the remainder of this section. From (3) and our assumptions
e1 < −1 and ei ≤ −1 for i ≤ k − 3, we see that

m = 1 +
k−1

∑
i=1

(b − ei − 1) > 1 + (k − 3)b + 2(b − 1) = (k − 1)b − 1 ≥ (k − 2)b.

Lemma 8.5. Let x1, . . . , xm−(k−2)b be general points on Ck−1. Then there exists Γ ∈ SymmCk−1

such that h0(L(Γ)) = 1, and the unique section of L(Γ) vanishes along the xi but at no other points
in the fibers α−1(α(xi)).
Proof. Let d = degα and let {h1, . . . , hd} be the points of a general fiber of α. Define

Γ ∶= {x1, . . . , xm−(k−2)b} ∪⋃
i≤b

{f−1(f(hi)) ∖ hi}.

Now, using (26), we see

L(Γ) = O (Γ + h1 + . . . + hd −
b

∑
i=1

f−1(f(hi))) = O(hb+1 + . . . + hd + x1 + . . . + xm−(k−2)b).

In particular, L(Γ) has a section that vanishes along the xi but at no other points in the fibers
α−1(α(xi)). It remains to see that h0(L(Γ)) = 1.

First, we observe that h0(O(hb+1+ . . .+hd)) = 1 since h0(O(h1+ . . .+hd)) = 2 and O(h1+ . . .+hd)
is basepoint free. By Riemann–Roch,

χ(O(hb+1 + . . . + hd)) = χ(O(h1 + . . . + hd)) − b = χ(L) + b(k − 1) − b = [0 − (m + 1)] + b(k − 2).
Hence, h1(O(hb+1 + . . .+hd)) =m− b(k − 2), so twisting up by this many general points kills the h1

without increasing h0. □

We now show that for Γ general, every zero of a general section of L(Γ) is isolated in its fiber
under α. For this, consider the incidence correspondence

Ψ = {(x,Γ) ∈ Ck−1 × SymmCk−1 ∶ h0(L(Γ)(−x)) ≠ 0}.
Because χ(L(Γ)(−x)) = 0, the locus Ψ ⊂ Ck−1 × SymmCk−1 is pure codimension 1.

By construction, if h0(L(Γ)) = 1, then the fiber of Ψ over Γ ∈ SymmCk−1 is the vanishing locus
of the unique section. We have already found one such Γ where there exists a point x that is the
only point of α−1(α(x)) in the fiber of Ψ→ SymmCk−1 over Γ. It therefore suffices to show that Ψ
is irreducible, which is Lemma 8.7 below. To prove Lemma 8.7, we first need the following.

Lemma 8.6. Suppose L is a line bundle on a curve C with h0(L) ≥ 2 and h1(L) = 0. Then, for
general x ∈ C, the line bundle L(x) is birationally very ample.

Proof. Consider P = {(p, q) ∈ Sym2C ∶ h0(L(−p − q)) ≥ h0(L) − 1}. Since it is defined by a
determinantal condition, P is either empty or pure dimension 1. If (p, q) ∉ P , then p and q
already impose independent conditions on L, so they impose independent conditions on L(x) for
all x ∈ C. Now fix some component of P and a general (p, q) in that component. It suffices to
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show that, for general x ∈ C, the points p and q impose independent conditions on L(x). Since
every component of P has dimension 1, we may assume that p and q are not both basepoints of
L, so h0(L(−p − q)) = h0(L) − 1, and therefore h1(L(−p − q)) = 1. Since x is general, we have
h1(L(x)(−p − q)) = 0. Hence, h0(L(x)(−p − q)) = h0(L(x)) − 2, as desired. □

Lemma 8.7. If m < g′, then the variety Ψ is irreducible.

Proof. First we show that no fiber of Ψ over Ck−1 is the entire space SymmCk−1. Let g′ be the
genus of Ck−1. Recall that χ(L(Γ)(−x)) = 0 for any x ∈ Ck−1. If h0(L(Γ)(−x)) > 0 for all Γ, then
we would have h1(L(Γ)(−x)) > 0 for all Γ, so h1(L(−x)) ≥ m + 1. But this is impossible since we
are assuming h1(L) =m−1. Since Ψ is pure codimension 1, every component must dominate Ck−1.

It remains to show that for a general x ∈ Ck−1, the fiber of Ψ over x is irreducible. Let K denote
the canonical bundle on Ck−1. Because χ(L(Γ)(−x)) = 0, we have

(28) h0(L(Γ)(−x)) = h1(L(Γ)(−x)) = h0(K ⊗L−1(x)(−Γ)).

Note that h0(K ⊗ L−1) = h1(L) = m − 1 ≥ 2 by (27) and h1(K ⊗ L−1) = h0(L) = 0. Therefore,
Lemma 8.6 says that K ⊗ L−1(x) is birationally very ample. Let s = h0(K ⊗ L−1(x)) − 1. The
cohomology group in (28) is non-zero if and only if the image of Γ under the map Ck−1 → Ps given
by ∣K ⊗L−1(x)∣ is contained in a hyperplane. Hence, the fiber of Ψ over x consists of those Γ that
are contained in hyperplane sections of Ck−1 → Ps. Since Ck−1 → Ps is birationally very ample, we
may use the Uniform Position Principle if the characteristic is 0 or if s ≥ 4 for any characteristic [10].
In these cases, the Uniform Position Principle says that the collection of Γ contained in hyperplane
sections of the image is irreducible.

The cases where s ≤ 3 occur when m = 3 or 4. If m = 3, then e⃗ = (−2,0,0,1), which has g′ = 2. If
m = 4, then e⃗ = (−2,0,0,2), (−2,−1,0,0,1), or (−3,0,0,1), which have g′ = 2,2, and 4 respectively.
In each of these cases m ≥ g′. □

8.2. Necessary and sufficient conditions for very ampleness. The remainder of the paper
is devoted to proving the following theorem.

Theorem 8.8. A general line bundle in W e⃗
BN is very ample if and only if either

(1) ek−2 ≥ 0 and r = h0(O(e⃗)) − 1 ≥ 3,
(2) k = 3 and e2 ≥ 1 and e3 − e2 ≤ 1 and ρ′(g, e⃗) = 0,
(3) k = 2 and e1 ≥ 1,
(4) k = 2 and (e1, e2) = (0, g) or (e1, e2) = (0, g + 1) (these are degree 2g + 1 and 2g + 2),
(5) g = 0 and ek−1 ≥ 0,
(6) g = 1 and e⃗ = (−1,0,1) or e⃗ = (−1, . . . ,−1,0,0,0) (smooth plane cubic), or
(7) g = 3 and e⃗ = (−2,0,1) or e⃗ = (−2,−1, . . . ,−1,0,0,0) (smooth plane quartic).

The main content of the above theorem is the sufficiency of part (1), which is Theorem 2 from
the introduction. The proof of this more precise theorem relies on our precise characterization of
relative very ampleness given in Theorem 7.2. Since a very ample line bundle is relatively very
ample, we consider each of the cases in Theorem 7.2 in the next five subsections.

8.2.1. Case (1) of Theorem 7.2: when ek−2 ≥ 0. If ek−2 ≥ 0 and r ≥ 3, then a generic line bundle in
W e⃗

BN is very ample by Theorem 2. So it remains to consider the case that ek−2 = ek−1 = ek = 0 and
ek−3 < 0. By assumption, deg e⃗ ≤ −k+3. In this case, ∣L∣ is birationally very ample by Lemma 8.4(1)
and maps C to P2. This map is an embedding if and only if the genus of C is equal to the arithmetic
genus of a plane curve of degree g − 1 + k + deg(e⃗). That is, we must have the equality

(29) g = (g + k + deg e⃗ − 2)(g + k + deg e⃗ − 3)
2

.
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On the other hand, we know that ρ′(g, e⃗) ≥ 0 and hence

(30) g ≥ u(e⃗) ≥ ∑
j<k−2≤i

ei − ej − 1 = 3(−k + 3 − deg e⃗).

Combining (29) and (30) we obtain

g ≥ (g − g/3 + 1)(g − g/3)
2

= (2g + 3)(2g)
18

,

and hence g ≤ 3. Those genera that satisfy (29) are g = 0, which falls into Theorem 8.8(5), and
g = 1, which falls into Theorem 8.8(6), and g = 3, which falls into Theorem 8.8(7).

Having dealt with this case, we will assume for the remainder of the proof that ek−2 < 0.
8.2.2. Case (2) of Theorem 7.2: when p = 0. This case is not relevant, since we assume p = 1.
8.2.3. Case (3) of Theorem 7.2: when k = 3 and e2 ≥ 0 and e3−e2 ≤ 1 and ρ′(g, e⃗) = 0. If e2 ≥ 1, then
the map from the nonnegative scroll P(E∨/F−) to Pr is an embedding, and so the composition with
the map from C to the nonnegative scroll (which we already know is an embedding by Theorem 7.2)
is also an embedding. This is Theorem 8.8(2).

It remains to consider the case that e2 = 0. First assume that e2 = e3 = 0. Then ∣L∣ maps C to
P1, and hence is very ample if and only if g = 0. This therefore falls into Theorem 8.8(5).

The only remaining case is e2 = 0 and e3 = 1. In this case C must again be a smooth plane
curve. A similar calculation as above shows that g = 1 or g = 3, which fall into cases (6) and (7) of
Theorem 8.8.

8.2.4. Case (4) of Theorem 7.2: when k = 2 and e1 ≥ 0. If e1 ≥ 1, then as in the previous case, the
map from the nonnegative scroll P(E∨/F−) = PE∨ to Pr is an embedding, and so the map from C
to Pr is also an embedding. This is Theorem 8.8(3).

If e1 = 0, then since the directrix is contracted by the complete linear system of OPE∨(1), it
suffices to determine when the curve meets the directrix at most once. This is an intersection
theory calculation on the Hirzebruch surface P(O ⊕O(−e2)). If F denotes the class of a fiber and
D denotes the class of the directrix, then [C] = (e2 + g + 1)F + 2D. Hence, C ⋅D = 0 if and only if
e2 = g + 1, and C ⋅D = 1 if and only if e2 = g. This is Theorem 8.8(4).

8.2.5. Case (5) of Theorem 7.2: when g = 0 and ek−1 ≥ 0. In all of these cases the line bundle on
P1 is of degree at least 1, and is hence very ample. This is Theorem 8.8(5).
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