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NONLINEAR EIGENVECTOR METHODS FOR CONVEX
MINIMIZATION OVER THE NUMERICAL RANGE\ast 
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Abstract. We consider the optimization problem in which a continuous convex function is to
be minimized over the joint numerical range of two Hermitian matrices. When those matrices are
of large size, solving such problems by convex optimization can be computationally expensive. The
goal of this paper is to present a novel nonlinear eigenvector method to accelerate the computation.
We will show that the global minimizer of the optimization problem corresponds to a solution of a
nonlinear eigenvalue problem with eigenvector nonlinearity (NEPv). The special structure of this
NEPv allows for an efficient sequential subspace search algorithm, which is a nonlinear analogue to
the NEPv of the commonly applied locally optimal conjugate gradient descent methods for Hermitian
linear eigenvalue problems. Our new algorithm can be proven globally convergent to an eigenvector
of the NEPv. Implementation details such as block iteration and preconditioning will be discussed.
Numerical examples, with applications in computing the coercivity constant of boundary integral
operators and solving multicast beamforming problems, show the effectiveness of our approach.
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1. Introduction. In this paper we consider the following minimization problem:

(1.1) min
y\in W (A,B)

F (y) and W (A,B) =

\biggl\{ \biggl[ 
xHAx
xHBx

\biggr] 
: x \in \BbbC n, \| x\| 2 = 1

\biggr\} 
\subset \BbbR 2,

where F : \BbbR 2 \rightarrow \BbbR is a continuous convex function, and A and B are n-by-n Hermitian
matrices. The set W (A,B) is known as the joint numerical range of the matrix pair
(A,B), and it is a convex region in \BbbR 2 by the famous Toeplitz--Hausdorff theorem;
see, e.g., [16]. Therefore, the problem (1.1) is by nature a convex optimization.

A number of problems can be written into the form of (1.1). When F is a
linear function, then the standard Rayleigh quotient minimization problem becomes
a trivial special case in this framework; e.g., for F (y) = y1 the minimizer is the
smallest Rayleigh quotient (xHAx)/(xHx) for \| x\| 2 = 1. For more general cases, a
famous example is the Crawford number computation, where the objective function is
F (y) = \| y\| 2. This problem has been studied since the 1970s [13] and is of particular
interest in eigenvalue sensitivity analysis [13, 42] and the study of the coercivity
constant for boundary operators [5]. Another example is the max-ratio minimization
problem with F (y) = max \{ y1, y2\} . This objective function is also nondifferentiable.
Such a problem arises in a class of homogeneous quadratic minimization [15], with
applications in multicast beamforming problems in signal processing; see, e.g., [39].

Most of the existing methods for (1.1) were based on convex optimization. As a
remarkable property of numerical range, the boundary of W (A,B) can be approxi-
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1772 DING LU

mated by a polygon, consisting of sampled supporting hyperplanes, each computed
by solving a Hermitian eigenvalue problem of size n; see, e.g., [22]. The minimizer
of (1.1) can then be estimated on the polygon by standard convex optimization [44].
For special F functions, this approach can lead to reformulations of problem (1.1)
as eigenvalue optimization problems; see, e.g., [11] for the Crawford number compu-
tation and [15] for the max-ratio minimization. Such reformulations, however, are
not available for a general F . In any case, including the eigenvalue optimization ap-
proaches, repeated Hermitian eigenvalue evaluations are typically required. This can
be prohibitively expensive for problems with large matrices, hence necessitating the
use of iterative methods as presented in the current paper for acceleration.

The main contribution of this work is to present a novel nonlinear eigenvector
method for solving (1.1). Denote

(1.2) \rho (x) :=

\biggl[ 
xHAx

xHx
,
xHBx

xHx

\biggr] T
\in \BbbR 2;

we can rewrite (1.1) as the following composite minimization:

(1.3) min
x\in \BbbC n\setminus \{ 0\} 

\scrF (x) and \scrF (x) := F (\rho (x)).

We will show that the global minimizer of this problem is a solution to a nonlin-
ear eigenvalue problem with eigenvector nonlinearity (NEPv). A sequential subspace
search algorithm will be introduced to solve the NEPv. Such an algorithm involves
only matrix-vector multiplication in each iteration and allows for block implemen-
tation; both are desirable for large-scale problems. The global convergence to an
eigenvector can also be proven. This algorithm framework works for both smooth
and nonsmooth F functions. For smooth problems, particular preconditioning and
global verification schemes can be incorporated to further enhance the performance.

Our sequential subspace methods can be viewed as extensions to NEPv of the lo-
cally optimal block preconditioned conjugate gradient (LOBPCG) method commonly
applied to Hermitian eigenvalue problems; see, e.g., [24, 25, 41, 30]. In each itera-
tion, a reduced-size NEPv, obtained by subspace projection, is solved, and then the
search subspace is updated by gradients. According to numerical experiments, these
algorithms are as fast as LOBPCG in terms of the number of iterations, whereas the
latter is only built for linear eigenvalue problems (LEPs) and hence is not applicable
here. This convergence behavior seems to imply that the NEPv can be solved at a
cost similar to a linear eigenvalue problem of the same size.

Although the algorithms are intended for general convex objective functions, they
also provide, as a byproduct, new uses for the Crawford number computation, the
max-ratio minimization, and related eigenvalue optimization. For those problems,
the superior performance of the nonlinear eigenvector approaches, versus the state-of-
the-art optimization methods, will be demonstrated by numerical experiments, with
applications in coercivity constant computation for boundary operators and multicast
transmit beamforming in signal processing.

The rest of this paper is organized as follows. In section 2, we present the NEPv
characterization for the global minimizer of the optimization problem (1.3). In sec-
tion 3, we develop and analyze the sequential subspace search algorithm for the NEPv
with a smooth objective function. In section 4, extensions to nonsmooth objective
functions are discussed. Implementation details are given in section 5, followed by
numerical examples in section 6, and conclusions in section 7.
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NONLINEAR EIGENVECTOR METHODS 1773

Notation. Throughout the paper, we follow the notation conventions in matrix
analysis. We use \BbbC m\times n for the set of m-by-n complex matrices, with \BbbC n = \BbbC n\times 1

and \BbbC = \BbbC 1. For real numbers we have \BbbR m\times n, \BbbR n, and \BbbR , respectively. We use \cdot T
for transpose and \cdot H for conjugate transpose. Let X be a matrix; span(X) is for the
subspace spanned by the columns ofX, X(i : j, :) is for the submatrix consisting of row
i to j of X, and X(:, k : \ell ) is for columns k to \ell . For a Hermitian X, \lambda min(X) denotes
the smallest eigenvalue. The objective function \scrF (x), which is a real-valued function
in complex variables, is not differentiable in the holomorphic sense. Hence, we will
work with the Wirtinger derivatives; see, e.g., [8, 27]. Namely, we view \scrF (x) = \scrF (p, q)
as a function in the real and imaginary components of x = p+ \jmath q, and we define

(1.4) \nabla w\scrF (x) := \nabla p\scrF (p, q) + \jmath \nabla q\scrF (p, q),

where \nabla p and \nabla q are the standard partial derivatives. Clearly, \nabla w\scrF (x) has a one-
to-one correspondence with the standard gradient \nabla (p,q)\scrF (p, q). So its angle with a
vector h = r + \jmath s \in \BbbC n is naturally defined as

(1.5) \angle w(\nabla w\scrF (x), h) := arccos
Re(hH \cdot \nabla w\scrF (x))

\| \nabla w\scrF (x)\| 2\| h\| 2
= \angle 

\biggl( 
\nabla (p,q)\scrF (p, q),

\biggl[ 
r
s

\biggr] \biggr) 
,

where \angle denotes the angle between two real vectors in the standard definition. So
\scrF (x) is descending in the direction of h if cos\angle w(\nabla w\scrF (x), h) < 0.

2. Optimality conditions and nonlinear eigenvalue problems. In this sec-
tion, we establish NEPv characterization for the solution of the optimization prob-
lem (1.3). We will use generalized gradient [12] to present the result, so that the case
of nonsmooth F will also be included. For a continuous convex function F (y), the
generalized gradient, denoted by \partial F (y), is the set of subgradients of F at y, and a
vector g \in \BbbR 2 is called a subgradient of F at y if it satisfies

(2.1) F (z) \geq F (y) + gT (z  - y) \forall z \in \BbbR 2.

For the composite function \scrF (x) = F (\rho (x)) in (1.3), the generalized gradient is ob-
tained by the chain rule (see, e.g., [12, Thm. 2.3.9] and [9, eq. (2.4)]) as

\partial w\scrF (x) :=

\biggl\{ 
g1\nabla w

\biggl( 
xHAx

xHx

\biggr) 
+ g2\nabla w

\biggl( 
xHBx

xHx

\biggr) \bigm| \bigm| \bigm| \bigm| \biggl[ g1g2
\biggr] 
\in \partial F (\rho (x))

\biggr\} 
=

\biggl\{ 
2g1
xHx

\biggl( 
Ax - xHAx

xHx
x

\biggr) 
+

2g2
xHx

\biggl( 
Bx - xHBx

xHx
x

\biggr) \bigm| \bigm| \bigm| \bigm| \biggl[ g1g2
\biggr] 
\in \partial F (\rho (x))

\biggr\} 
=

\biggl\{ 
2

xHx

\biggl( 
H(x)x - xHH(x)x

xHx
x

\biggr) \bigm| \bigm| \bigm| \bigm| H(x) = g1A+ g2B,

\biggl[ 
g1
g2

\biggr] 
\in \partial F (\rho (x))

\biggr\} 
,(2.2)

where the w in \partial w is to indicate that the elements are expressed in the Wirtinger
style.1

By the standard nonsmooth analysis [12, Prop. 2.3.2], a necessary condition for
x \in \BbbC n to be a local optimizer of (1.3) is given by

(2.3) 0 \in \partial w\scrF (x),

and any vector x satisfying (2.3) is called stationary. This optimality condition leads
to the following NEPv characterization for the optimizers.

1Let x = p + \jmath q \in \BbbC n and view \scrF (x) = \scrF (p, q) as a function in the real and imaginary parts of

x; then the standard generalized gradient \partial \scrF (p, q) = \{ 
\bigl[ 
Re(z)T , Im(z)T

\bigr] T
: z \in \partial w\scrF (x)\} .
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1774 DING LU

Theorem 2.1 (NEPv characterization). For the minimization problem (1.3),
the following hold:
(a) A vector x is stationary if and only if it satisfies the nonlinear eigenvalue problem

with eigenvector nonlinearity (NEPv)

(2.4) H(x)x = \lambda x and x \not = 0,

where

(2.5) H(x) := g1A+ g2B for some

\biggl[ 
g1
g2

\biggr] 
\in \partial F (\rho (x)).

(b) A vector x is a global minimizer if and only if the assumptions of (2.4) hold with
\lambda = \lambda min(H(x)).

Proof. Result (a) is a direct consequence of the conditions (2.2) and (2.3) and the
fact that any x satisfying the NEPv (2.4) has a corresponding \lambda = xHH(x)x/(xHx).

For result (b), we first show the necessity. Denote by x\ast a global minimizer,
y\ast := \rho (x\ast ) \in W (A,B), and fmin := \scrF (x\ast ) = F (y\ast ). Define the convex sublevel set

Lf := \{ y \in \BbbR 2 : F (y) < fmin\} .

If Lf = \emptyset , then the convex function F achieves minimum in \BbbR 2 at y\ast , which implies
g = 0 \in \partial F (y\ast ) by convex analysis [7]. So (2.4) holds with H(x\ast ) = 0 and \lambda = 0.

Now, consider Lf as being nonempty. Since fmin is a global minimizer, it holds
that F (y) \geq fmin for all y \in W (A,B). Hence, the two convex sets Lf and W (A,B)
are disjoint. We can separate the two sets by a hyperplane: \exists g \not = 0 \in \BbbR 2 and c \in \BbbR ,
s.t.

(2.6) gT z \leq c for all z \in Lf and gT z \geq c for all z \in W (A,B).

By continuity of F , the y\ast \in W (A,B) lies in the completion Lf . So by (2.6),

(2.7) gT y\ast = c.

Geometrically, gT z - c = 0 defines a supporting hyperplane of Lf at y\ast . The vector g,
which is an outer normal direction of the sublevel set Lf at y\ast , satisfies \alpha g \in \partial F (y\ast )
for some scalar \alpha > 0; see, e.g., [20, Thm. VI.1.3.5]. Since the inequalities in (2.6)
can still hold for g and c multiplied by \alpha , we can always assume that g \in \partial F (y\ast ).

The condition (2.7), combined with the second equation of (2.6), implies

min
y\in W (A,B)

gT y = gT y\ast \leftrightarrow min
x\in \BbbC n

xH (g1A+ g2B)x

xHx
=

xH
\ast (g1A+ g2B)x\ast 

xH
\ast x\ast 

.

Let H(x\ast ) = g1A+g2B; the Rayleigh quotient (xHH(x\ast )x)/(x
Hx) achieves minimum

at x\ast . Hence x\ast is an eigenvector corresponding to the smallest eigenvalue of H(x\ast ).
Next, consider the sufficiency. Let (2.4) hold with \lambda = \lambda min(H(x)). Since g \in 

\partial F (y) for y = \rho (x), the subgradient inequality (2.1) implies for all \widetilde y \in W (A,B) that

F (\widetilde y) - F (y) \geq gT (\widetilde y  - y) \geq min
z\in W (A,B)

gT z  - gT y = min\widetilde x \not =0

\widetilde xHH(x)\widetilde x\widetilde xH\widetilde x  - xHH(x)x

xHx
= 0,

where for the last equation we used the eigenvalue minimization principle for the
smallest eigenvalue \lambda . Hence, F (y) = \scrF (x) is a global minimizer.
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NONLINEAR EIGENVECTOR METHODS 1775

The NEPv (2.4) is a type of ``self-consistent"" eigenvalue problem, where the solu-
tion (\lambda \ast , x\ast ) is an eigenpair of the Hermitian matrix H(x\ast ) defined by x\ast itself. Since
H(x\ast ) has n eigenvalues ordered as \lambda 1 \leq \lambda 2 \leq \cdot \cdot \cdot \leq \lambda n, it holds that \lambda \ast = \lambda \ell for some
1 \leq \ell \leq n. As shown in Theorem 2.1(b), the index \ell is crucial for the optimality of
x\ast : if \ell = 1, then the stationary condition (2.4) is also sufficient for global optimality.

We make two comments on the NEPv characterization. First, Theorem 2.1(b)
provides a sufficient and necessary condition for the global optimality. This condition
is different from the standard second order optimality conditions, which only serve
as sufficient local optimality conditions; see, e.g., [34, Thm. 12.6] for differentiable
problems and [9] for convex composite minimization problems. Second, the tech-
nique of NEPv characterization has also been explored for optimization problems in
computational physics and chemistry and for many data analysis applications; see,
e.g., [28, 32, 10, 46, 3]. Depending on the problem under consideration, particular
NEPvs and their eigenvalue ordering conditions (the index \ell ) can be established.
Those NEPvs, however, usually only serve as necessary conditions for optimality.

3. Sequential subspace search. In this section, we introduce an iterative
method, based on sequential subspace search, to solve the NEPv (2.4). We assume
F is a smooth function, and we will discuss the nonsmooth case in section 4. For a
smooth function, the generalized gradient \partial F (y) is simply the standard gradient, so
the coefficient matrix H(x) in (2.4) is given by

(3.1) H(x) = F1(\rho (x)) \cdot A+ F2(\rho (x)) \cdot B,

where Fj(y) =
\partial F
\partial yj

(y) for j = 1, 2 denotes the partial derivatives of F .

3.1. Nonlinear Rayleigh--Ritz procedure. Solving the NEPv (2.4) by a stan-
dard method, such as the self-consistent-field (SCF) iteration (see subsection 3.1.2),
can be computationally expensive, especially for problems of large size. In what fol-
lows we describe a popular subspace search technique to accelerate the computation.

3.1.1. Subspace search. The basic idea of subspace search is as follows: Given
a low-dimensional search subspace \scrU \subset \BbbC n, we find a vector \widehat x \in \scrU that best approxi-
mates the desired eigenvector. In view of the minimization characterization (1.3), the
best approximation can be defined as

(3.2) \widehat x := argmin
x\in \scrU 

F (\rho (x)) = U \cdot 
\biggl( 
argmin
v\in \BbbC k

\widehat \scrF (v)

\biggr) 
,

where U \in \BbbC n\times k is a basis matrix (not necessarily orthogonal) of \scrU , and

\widehat \scrF (v) := F (\widehat \rho (v)) with \widehat \rho (v) = \Biggl[ vH \widehat Av

vH\widehat Mv
,
vH \widehat Bv

vH\widehat Mv

\Biggr] T
\in \BbbR 2,

and \widehat A = UHAU , \widehat B = UHBU , and \widehat M = UHU . Here the second equation of (3.2) is
obtained by a substitution of variables x = Uv.

Observe that the last problem in (3.2) is again a composite minimization in the
same form2 as (1.3), but for matrices of a reduced size k. According to Theorem 2.1,
the stationary condition of this optimization problem is given by the projected NEPv

(3.3) \widehat H(v)v = \lambda \widehat Mv and v \not = 0,

2We can convert the Rayleigh quotients \widehat \rho (v) into the standard form (1.2) by the factorization\widehat M = \widehat L\widehat LH : Let v = \widehat L - Hu, \widetilde A = \widehat L - 1 \widehat A\widehat L - H , and \widetilde B = \widehat L - 1 \widehat B\widehat L - H ; then \widehat \rho (v)T =
\Bigl[ 
uH \widetilde Au
uHu

, uH \widetilde Bu
uHu

\Bigr] 
.
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1776 DING LU

where

(3.4) \widehat H(v) := F1

\bigl( \widehat \rho (v) \bigr) \cdot \widehat A+ F2

\bigl( \widehat \rho (v) \bigr) \cdot \widehat B.

Moreover, \widehat v is a global minimizer of \widehat \scrF if and only if it solves the NEPv (3.3), with \lambda 

being the smallest eigenvalue of the matrix pencil \widehat H(v) - \lambda \widehat M .
Since the projected NEPv (3.3) is of a much smaller size, the corresponding eigen-

vector \widehat v can be computed by SCF iteration, or by convex optimization approaches
mentioned in the introduction. Once \widehat v is obtained, we have

(3.5) \widehat x = U\widehat v.
The procedure from above is called a nonlinear Rayleigh--Ritz procedure, which is a
natural generalization of the well-known Rayleigh--Ritz procedure [36] to the NEPv (2.4).

3.1.2. SCF for the reduced NEPv. SCF iteration is a fixed-point type itera-
tion commonly applied to solve NEPvs in computational physics and chemistry [28].
For the reduced NEPv (3.3), an SCF iteration can be summarized as follows: Given
an initial vector v(0), iteratively compute v(1), v(2), . . . satisfying

(3.6) \widehat H(v(p))v(p+1) = \lambda (p+1)\widehat Mv(p+1) for p = 0, 1, . . . ,

where \lambda (p+1) is the smallest eigenvalue of the matrix pencil \widehat H(v(p)) - \lambda \widehat M . For reasons
that will be be made clear shortly, we normalize the eigenvectors to satisfy

(3.7) (v(p+1))H\widehat Mv(p+1) = 1 and (v(p))H\widehat Mv(p+1) \geq 0.

The iteration (3.6) is an SCF in its simplest form, also known as the pure SCF
iteration. Such an algorithm, however, is not always convergent. To address this
issue, we can add an extra line search step so that \scrF (v(p+1)) is sufficiently reduced:

v(p+1) := \alpha pv
(p+1) + (1 - \alpha p)v

(p) = v(p) + \alpha pdp,

where dp = v(p+1)  - v(p) and \alpha p is a damping factor obtained by a line search for
\alpha p \in [0, 1], s.t. the following Armijo condition (see, e.g., [34, Chap. 3]) is satisfied:

\widehat \scrF \Bigl( v(p) + \alpha dp

\Bigr) 
\leq \widehat \scrF \Bigl( v(p)\Bigr) + \alpha p \cdot cRe

\Bigl( 
dHp \cdot \nabla w \widehat \scrF (v(p))

\Bigr) 
,

where c \in (0, 1) is a given constant. The overall algorithm of SCF with a line search
is outlined in Algorithm 3.1, where a safeguard step described in Remark 3.1 has been
included in line 5. Such a line search scheme is also applied in the SCF iteration [3].

By the normalization condition (3.7) and the safeguard scheme in Remark 3.1,
the search directions dp in Algorithm 3.1 are always descending and gradient-related;
i.e., it holds for all p \geq 0 that cos\angle w( - \nabla w\scrF (v(p)), dp) > \gamma with a constant \gamma > 0.
Hence, by a direct application of the convergence results for line search methods with
gradient-related search directions (see, e.g., [1, Thm. 4.3]), we can conclude that the
algorithm is globally convergent: any limiting point v of \{ v(p)\} \infty p=0 is stationary for

the function \widehat \scrF (v) in (3.2); namely, v is an eigenvector of the NEPv (3.3).
In addition to the line search from above, several other techniques developed in

computational physics and chemistry can also be applied to stabilize the convergence
of the SCF iteration---for example, level-shifting [38], direct inversion in the iterative
subspace (DIIS) [37], and trust-region SCF [43, 45]. Since the reduced NEPv's are of
a small size, those methods do not make a big difference in the overall performance
of the subspace algorithm.
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NONLINEAR EIGENVECTOR METHODS 1777

Algorithm 3.1. SCF iteration with line search for the NEPv (3.3).

Input: Starting vector v(0) with v(0)H\widehat Mv(0) = 1, tolerance tol r, maxit, and line
search factors \gamma , c, \tau \in (0, 1) (e.g., \gamma = c = \tau = 0.1).

Output: Approximate eigenvector \widehat v.
1: for p = 0, 1, . . . , maxit do
2: Compute \widehat rp = \widehat H(v(p))v(p)  - \widehat \mu p

\widehat Mv(p) with \widehat \mu p = v(p)H \widehat H(v(p))v(p).
3: Check convergence: if \| \widehat rp\| 2 \leq \| v(p)\| 2 \cdot tol r then break.

4: Solve the Hermitian eigenvalue problem \widehat H(v(p))v = \lambda \widehat Mv for the smallest ei-
genvalue \lambda (p+1) and the eigenvector v(p+1) normalized as in (3.7).

5: Set \alpha p = 1, dp = v(p+1)  - v(p) (reset dp =  - \widehat rp/\| \widehat rp\| 2 if cos\angle w( - \widehat rp, dp) \leq \gamma ).

6: while \widehat \scrF \bigl( v(p)\bigr)  - \widehat \scrF \bigl( v(p+1)
\bigr) 
<  - \alpha p \cdot cRe(2dHp \widehat rp) do

7: \alpha p := \tau \alpha p and v(p+1) := v(p) + \alpha pdp. \% backtracking line search
8: end while
9: end for

10: Return \widehat v = v(p).

Remark 3.1. Recall from (2.2) that \nabla w \widehat \scrF (v(p)) = 2\widehat rp with \widehat rp defined as in line 2
of Algorithm 3.1. For the SCF iteration (3.6), it holds for dp = v(p+1)  - v(p) that

(\nabla w \widehat \scrF (v(p)))H \cdot dp = 2 \cdot v(p)H( \widehat H(v(p)) - \widehat \mu p \cdot \widehat M)(v(p+1)  - v(p))

= 2 \cdot v(p)H\widehat Mv(p+1) \cdot (\lambda (p+1)  - \widehat \mu p) \leq 0,

where we used (3.6) in the second equation and \lambda (p+1) = minv(v
HH(v(p))v)/(vH\widehat Mv)

and (3.7) in the last equation. Hence, if (\nabla w \widehat \scrF (v(p)))H \cdot dp \not = 0, then dp is a descent

direction. It can happen that dp is nearly orthogonal to the gradient\nabla w \widehat \scrF (v(p)) = 2\widehat rp;
namely, cos\angle w( - \widehat rp, dp) \leq \gamma for a small constant \gamma > 0. In this case, we reset the
search direction dp as the negative gradient dp =  - \widehat rp / \| \widehat rp\| 2. By such a safeguard
step, the search directions are gradient-related with cos\angle w( - \widehat rp, dp) > \gamma for all p \geq 0.

3.2. Sequential subspace search. By the nonlinear Rayleigh--Ritz procedure,
we can develop a sequential subspace search algorithm for the NEPv (2.4): In iteration
k, unless xk is already an optimizer with \nabla w\scrF (xk) = 0, we search for the next

(3.8) xk+1 \in span

\biggl\{ 
xk - 1, xk, rk

\biggr\} 
in a search subspace spanned by the current iterate xk, the old xk - 1, and the gradient

(3.9) rk :=
\nabla w\scrF (xk)

\| \nabla w\scrF (xk)\| 2
= \xi k \cdot 

\biggl( 
H(xk)xk  - \mu (xk) \cdot xk

\biggr) 
with \mu (xk) = (xH

k H(xk)xk)/(x
H
k xk), and \xi k \geq 0 is a normalization factor, s.t. \| rk\| 2 =

1. By discussions in subsection 3.1, the best approximation xk+1 can be computed
by the nonlinear Rayleigh--Ritz procedure as

(3.10) xk+1 = Uk\widehat vk/\| Uk\widehat vk\| 2 with Uk = [xk, rk, xk - 1],

where \widehat vk is a solution to the projected NEPv (3.3) by Uk. Here we have assumed
xk - 1 is linearly independent of xk, rk; otherwise we use Uk = [xk, rk], which is always
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1778 DING LU

orthogonal. Starting with x0 \in \BbbC n and x - 1 \in 0n, this process can be repeated for
k = 0, 1, . . . until convergence is reached, e.g., with \nabla w\scrF (xk) sufficiently small.

Since gradients are used for the search, each individual iteration of the subspace
algorithm is at least as fast as gradient descent. We can therefore prove the global
convergence in the following theorem. This result also shows that the NEPv (3.3)
can be solved inexactly, and that accidental failures of convergence of SCF iteration
within maxit will not terminate the overall algorithm. This provides us with great
flexibility in choosing the parameters tol r and maxit for Algorithm 3.1.

Theorem 3.2 (global convergence). Let F be a smooth convex function over
W (A,B), and let \{ xk\} \infty k=1 be produced by the sequential subspace search (without early
convergence) using the nonlinear Rayleigh--Ritz procedure (3.10). Assume each reduced
NEPv (3.3) is solved either exactly or by running a few steps of the SCF iteration

in Algorithm 3.1 starting with v
(0)
k = e1. Then, it holds that \scrF (xk+1) < \scrF (xk) for

k = 0, 1, . . ., and any limiting point \widetilde x of \{ xk\} \infty k=1 is an eigenvector of the NEPv (2.4).

Proof. It is sufficient to consider the case where the NEPv is solved inexactly by
the SCF iteration. We will show that the computed xk+1 satisfies \scrF (xk+1) \leq \scrF (\widetilde xk+1),
where \widetilde xk+1 is a vector satisfying the Armijo condition

(3.11) \scrF (\widetilde xk+1) \leq \scrF (xk) + c \cdot Re(\widetilde dHk \cdot \nabla w\scrF (xk)) with \widetilde dk = \widetilde xk+1  - xk,

and \widetilde dk is gradient-related, i.e., cos\angle w( - \nabla w\scrF (xk), \widetilde dk) > \gamma . Here c > 0 and \gamma > 0
are constants independent of k. Then the global convergence is obtained by a direct
application of [1, Thm. 4.3] for accelerated line search methods.

Consider xk+1 (3.10) with vk computed by Algorithm 3.1. Let v
(1)
k = e1 + \alpha 0d0

be the first iterate by Algorithm 3.1. Due to the line search in lines 5--8, v
(1)
k satisfies

(3.12) \widehat \scrF k(v
(1)
k ) \leq \widehat \scrF k(e1) + c \cdot \alpha 0Re(d

H
0 \cdot \nabla w \widehat \scrF k(e1)),

where \widehat \scrF k is defined as in (3.2) with Uk. Because of the safeguarding in line 5, the

search direction d0 also satisfies cos\angle w( - \nabla w \widehat \scrF k(e1), d0) > \gamma .

Since \widehat \scrF k(v) = \scrF (Ukv) and xk = Uke1, by the chain rules, \nabla w \widehat \scrF (e1) = UH
k \cdot 

\nabla w\scrF (xk). Let \widetilde xk+1 := Ukv
(1)
k = xk + \alpha 0Ukd0. Then (3.11) follows from (3.12).

Moreover, the increment \widetilde dk = \alpha 0 \cdot Ukd0 is also a gradient-related direction due to

cos\angle w(Ukd0, - \nabla w\scrF (xk)) =
 - Re(dH0 UH

k \cdot \nabla w\scrF (xk))

\| Ukd0\| 2 \cdot \| \nabla w\scrF (xk)\| 2
=

 - Re(dH0 \cdot \nabla w \widehat \scrF k(e1))

\| Ukd0\| 2 \cdot \| \nabla w\scrF (xk)\| 2

\geq cos\angle w(d0, - \nabla w \widehat \scrF k(e1))\surd 
3

\geq \gamma \surd 
3
,

where in the third equation we used \| Ukd0\| 2 \leq 
\surd 
3\| d0\| 2 (as Uk has unitary columns)

and \| \nabla w\scrF (xk)\| 2 = | eH2 UH
k \cdot \nabla w\scrF (xk)| \leq \| \nabla w \widehat \scrF k(e1)\| 2 (as Uke2 = rk = \zeta k\nabla w\scrF (xk)).

Finally, due to monotonicity of Algorithm 3.1, it holds that \scrF (xk+1) \leq \scrF (\widetilde xk+1).

For Hermitian eigenvalue problems, the sequential subspace search using the sub-
space (3.8) has been applied in the well-known LOBPCG method [25]. The algorithm
presented is therefore a formal extension of LOBPCG to the NEPv (2.4). In particu-
lar, whenH(x) = H is a constant matrix, the NEPv reduces to a Hermitian eigenvalue
problem, and the algorithm coincides with LOBPCG in its simplest form. Apart from
eigenvalue computation, the idea of sequential subspace search has also been applied
in [18] for minimizing a quadratic function over a sphere, in [33] for unconstrained
optimization problems, and in [1] for Riemannian optimization.
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NONLINEAR EIGENVECTOR METHODS 1779

3.3. Other issues.

3.3.1. Preconditioned expansion. The sequential subspace search, as a gradi-
ent descent method, is linearly convergent. For acceleration, we can extend the search
subspace (3.8) with extra vectors. Motivated by Newton's methods (see Appendix A
for details), we propose to extend the subspace as

(3.13) span

\biggl\{ 
xk - 1, xk, rk,

\bigm| \bigm| \bigm| \bigm| p(a)k , p
(b)
k

\biggr\} 
,

where

(3.14)
\Bigl[ 
p
(a)
k , p

(b)
k

\Bigr] 
:= (H(xk) - \lambda kI)

 - 1
[Axk, Bxk],

and \lambda k is a prescribed shift. This formula resembles inverse iteration in eigenvalue
computation. With a properly chosen \lambda k, such an extended subspace can lead to local
quadratic convergence.

Theorem 3.3 (quadratic convergence). Assume F is with continuous second
derivatives, and (\lambda \ast , x\ast ) is an eigenpair of the NEPv (2.4), with \lambda \ast = \lambda min(H(x\ast ))
being a simple eigenvalue and bHx\ast \not = 0 for a normalization vector b \in \BbbC n. Define
the shift parameter in (3.14) by \lambda k = (bHH(xk)xk)/(b

Hxk). Then, provided \lambda k \not = 0
and H(xk) - \lambda kI is nonsingular, the subspace (3.13) contains a vector \widehat x satisfying
tan\angle (\widehat x, x\ast ) = \scrO (| tan\angle (xk, x\ast )| 2) when tan\angle (xk, x\ast ) is sufficiently small.

Proof. The proof is deferred to Appendix A.

To obtain the vectors in (3.14), we need to solve a linear system of equations with
two right-hand sides. For structured matrices, this can be done efficiently by direct
solvers, e.g., by sparse LU. Since those extra vectors are only for acceleration, their
exact solution are usually not needed. Hence, we can also apply iterative methods or
use a preconditioner Tk \approx (H(xk) - \lambda kI)

 - 1 for inexact solutions.
When an inexact solver is applied, it is more appealing to consider the following

alternative for (3.14):

(3.15)
\Bigl[ 
p
(a)
k , p

(b)
k

\Bigr] 
:= (H(xk) - \lambda kI)

 - 1
[rA(xk), rB(xk)],

where

(3.16) rA(x) =

\biggl( 
A - xHAx

xHx
I

\biggr) 
x and rB(x) =

\biggl( 
B  - xHBx

xHx
I

\biggr) 
x

are residual vectors corresponding to A - \lambda I and B - \lambda I, respectively. Given that \lambda k is
not an exact nonlinear Rayleigh quotient (xH

k H(xk)xk)/(x
H
k xk), an easy calculation

shows that the extended subspaces (3.13) by (3.14) and (3.15) are identical. Compared
to (3.14), the new formulas (3.15) apply inversion on the residuals, i.e., the gradients of
the Rayleigh quotients. When a preconditioner Tk \approx (H(xk) - \lambda kI)

 - 1 is applied, this
scheme resembles the preconditioned residual technique and the generalized Davidson
methods that are commonly used in linear eigenvalue computation; see, e.g., [41, 2].

3.3.2. Global verification and restarting. From Theorem 3.2, the sequen-
tial subspace algorithm is globally convergent to an eigenvector of the NEPv (2.4). In
practice, the converged eigenvector is usually the one corresponding to the smallest
eigenvalue and hence is a global minimizer of \scrF . Such a global convergence is partially
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1780 DING LU

because of the ``global search"" within the subspace, which makes it easier to escape
local optimizers and saddle points than when using those standard optimization tech-
niques based on line search.

Even so, the rare but possible convergence to a local optimizer is undesirable. In
applications where global optimality is a crucial concern, it is necessary to verify that
the computed x\ast is indeed a global solution. In view of Theorem 2.1(b), this can be
done by computing the smallest eigenvalue \lambda min, and the corresponding eigenvector\widehat x, of the matrix H(x\ast )

(3.17) H(x\ast )\widehat x = \lambda min \cdot \widehat x.
Then x\ast is a global minimizer if \lambda min = (xH

\ast H(x\ast )x\ast )/(x
H
\ast x\ast ). The eigenvalue prob-

lem (3.17) can be solved by an iterative method such as LOBPCG or eigs in MAT-
LAB.

If the global verification fails, namely, \lambda min \not = (xH
\ast H(x\ast )x\ast )/(x

H
\ast x\ast ), we need to

restart the algorithm for a better solution. Then the eigenvector \widehat x in (3.17) provides
an ideal restarting vector. As justified in Lemma 3.4, by restarting with

(3.18) x0 := \widehat x and x - 1 := x\ast ,

we can always obtain an x1 with \scrF (x1) < \scrF (x\ast ) and escape the local optimizer x\ast .

Lemma 3.4. Let (\lambda \ast , x\ast ) be an eigenpair of the NEPv (2.4), and let (\lambda min, \widehat x) be
a solution to the linear eigenvalue problem (LEP) (3.17). If \lambda \ast > \lambda min, then it holds
strictly that

(3.19) min
x\in span([x\ast ,\widehat x])\scrF (x) < \scrF (x\ast ).

Proof. Let U = [x\ast , \widehat x]; we have that U is of full column rank since \lambda \ast \not =
\lambda min(H(x\ast )). Hence, (3.19) can be written as

min
y\in W

F (y) < F (\rho (x\ast )) with W := \{ [vH \widehat Av, vH \widehat Bv]H : vH\widehat Mv = 1\} ,

where \widehat A = UHAU , \widehat B = UHBU , and \widehat M = UHU . Due to the convexity of the
numerical range W and that both \rho (x\ast ), \rho (\widehat x) \in W , we have the entire line segment
[\rho (x\ast ), \rho (\widehat x)] \subset W . Moreover, F is descending along the line segment [\rho (x\ast ), \rho (\widehat x)] as
\nabla F (y)| y=\rho (x\ast ) \cdot (\rho (\widehat x) - \rho (x\ast )) = \widehat xHH(x\ast )\widehat x - xH

\ast H(x\ast )x\ast = \lambda min(H(x\ast )) - \lambda \ast < 0,

where we assumed x\ast , \widehat x are unitary. Hence, \exists y \in [\rho (x\ast ), \rho (\widehat x)], s.t. F (y) < F (\rho (x\ast )).

4. Extension to nonsmooth objective functions. We now describe sequen-
tial subspace methods for nondifferentiable objective functions. One major issue to
be addressed is how to choose the search subspace. A particular element in \partial w\scrF (x)
will not necessarily be descending and hence cannot be used immediately as a search
direction. Fortunately, the generalized gradient (2.2), due to the special composite
formulation of \scrF , always satisfies the inclusion relation

(4.1) \partial w\scrF (x) \subset span
\bigl\{ 
rA(x), rB(x)

\bigr\} 
,

where rA(x) and rB(x) are residuals, defined as in (3.16), for matrix pencils A - \lambda I and
B  - \lambda I, respectively. Therefore, we can use the two-dimensional ``descent subspace""
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NONLINEAR EIGENVECTOR METHODS 1781

for the local search. More precisely, for sequential subspace search, we apply the
following search subspace in analogy to (3.8):

(4.2) xk+1 \in span

\biggl\{ 
xk - 1, xk, rA(xk), rB(xk)

\biggr\} 
,

which contains the current iterate xk, the old iterate xk - 1, and the descent sub-
space (4.1).

The best approximation xk+1 can be defined in the same way as (3.2) so that

(4.3) xk+1 = Uk\widehat vk/\| Uk\widehat vk\| 2,
where Uk is a basis matrix of the subspace (4.2), and \widehat vk is a solution to the following
projected NEPv by U = Uk:

(4.4) \widehat H(v)v = \lambda \widehat Mv with \widehat H(v) = g1 \widehat A+ g2 \widehat B for some

\biggl[ 
g1
g2

\biggr] 
\in \partial F (\widehat \rho (v)),

where \lambda is the smallest eigenvalue of the matrix pencil \widehat H(v)  - \lambda \widehat M . This NEPv,
unlike (3.3) in the smooth case, cannot be immediately solved by SCF iteration since\widehat H(v) has no closed-form expression. Nevertheless, it can be written back to the convex
minimization in the form of (1.1) and solved by convex optimization. For the moment,
we assume the solution \widehat vk is always available but do not make any assumption on how
it is computed. Despite the nonsmoothness in F , we can show a global convergence
result similar to that of the smooth version in Theorem 3.2.

Theorem 4.1. The sequence \{ xk\} \infty k=1 produced by (4.3) is monotonic in function
values \scrF (xk+1) \leq \scrF (xk) for k = 1, . . . , where equality holds only if xk is stationary.
In addition, any limiting point \widetilde x of \{ xk\} \infty k=1 is an eigenvector of the NEPv (2.4).

Proof. Since the current iterate xk is included in the search subspace (4.2), the
monotonicity \scrF (xk+1) \leq \scrF (xk) follows directly from the definition (3.2). As a result,
we have F (\rho (\widetilde x)) = \scrF \infty with \scrF \infty \leq limk\rightarrow \infty \scrF (xk).

For global convergence, it suffices to consider the case where \rho (\widetilde x) is a nonsmooth
point of F , since otherwise Theorem 3.2 applies.

We first show that for any nonstationary \widetilde x, it holds strictly that \scrF (\widetilde x) < minx\in \scrU \scrF (x)
with \scrU := span\{ \widetilde x, rA(\widetilde x), rB(\widetilde x)\} . Assume otherwise; then \scrF (\widetilde x) = minx\in \scrU \scrF (x). Let
U be an orthogonal basis of \scrU ; then \widetilde v = UH\widetilde x is a global minimizer of the projected\widehat \scrF (v) in (3.2). By Theorem 2.1, \widetilde v satisfies the NEPv \widehat H(\widetilde v)\widetilde v = \widetilde \lambda \widetilde v; namely, it holds
for some g \in \partial F (\rho (\widetilde x)) that

0 = (g1 \cdot UHAU + g2 \cdot UHBU  - \widetilde \lambda I)\widetilde v = UH(g1A+ g2B  - \widetilde \lambda I)\widetilde x.
Since (g1A+ g2B  - \widetilde \lambda I)\widetilde x = g1rA(\widetilde x) + g2rB(\widetilde x) \in \scrU , we have (g1A+ g2B  - \widetilde \lambda I)\widetilde x = 0.
Hence \widetilde x is an eigenvector of the NEPv (2.4), contradicting \widetilde x being nonstationary.

Therefore, for a nonstationary \widetilde x, it holds that \exists \widehat x \in span\{ \widetilde x, rA(\widetilde x), rB(\widetilde x)\} , s.t.
\| \widehat x\| 2 = 1 and \scrF (\widehat x) = \scrF (\widetilde x)  - \delta for some constant \delta > 0. Since \widetilde x is a limiting point,
we obtain by the continuity of rA(x), rB(x) that

\forall \varepsilon > 0, \exists xk, s.t. [\widetilde x, rA(\widetilde x), rB(\widetilde x)] = [xk, rA(xk), rB(xk)] + E and \| E\| 2 \leq \varepsilon ,

we have \widehat x = \widehat xk +\scrO (\varepsilon ) for some \widehat xk \in span\{ [xk, rA(xk), rB(xk)]\} . On the other hand,

\scrF (xk+1) \leq min
x\in span\{ [xk,rA(xk),rB(xk)]\} 

\scrF (x) \leq \scrF (\widehat xk)
\varepsilon \rightarrow 0 -  -  - \rightarrow \scrF (\widehat x) = \scrF \infty  - \delta ,

where we used the continuity of \scrF (x). This contradicts limk\rightarrow \infty \scrF (xk) \geq \scrF \infty .
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1782 DING LU

Wemake two comments on the search scheme (4.2), in comparison with its smooth
counterpart (3.8). First, for a differentiable F function, we can also apply the ex-
tended subspace (4.2). In practice, this results in only a marginal improvement over
the single vector formula (3.8) regarding the approximation error but increases the
computation cost due to a larger projection basis. For efficiency considerations, the
search subspace (3.8) is always recommended in the smooth case. Second, since the
matrix H(xk) is not uniquely defined at a nonsmooth point, it is generally difficult to
apply the global verification for a computed eigenvector xk as in subsection 3.3.2.

5. Implementation issues. In this section, we discuss implementation details
for the proposed algorithms. The recurrence relations (3.8) and (4.2) allow for efficient
implementation. Many techniques developed for LOBPCG (see, e.g., [25]) can be
applied in parallel to our nonlinear version, including the use of difference vectors
to improve the condition number of basis matrices, and block iteration to enhance
performance. For simplicity of exposition, those techniques will be explained for the
smooth function F , and their application to the nonsmooth case is straightforward.

Difference vectors. In the basis matrix Uk of (3.10), the vectors xk - 1 and xk tend
to be linearly dependent upon convergence. To avoid ill-conditioned basis matrices,
we can introduce the difference vector pk = xk - xk - 1 and use Uk = [xk, pk, rk] instead.
We can keep pk in the memory and update the next pk+1 from pk directly.

Block iteration. Block iterations are widely used in eigenvalue computation. The

idea is to iterate over \ell vectorsXk = [x
(1)
k , . . . , x

(\ell )
k ] simultaneously rather than a single

xk. This is appealing from an efficiency perspective for particular computer architec-
tures; in addition there are several other benefits such as ease of parallelization and
faster convergence by extended search subspace. For a straightforward block imple-

mentation of (3.8), we take the leading x
(1)
k to serve as the approximate eigenvector,

and we take the remaining x
(2)
k , . . . , x

(\ell )
k as auxiliary vectors. The recurrence (3.8)

can be written as

Xk+1 \in span\{ [Xk - 1, Xk, Rk]\} ,

where ``\in "" holds columnwisely, and Rk = [r
(1)
k , . . . , r

(\ell )
k ] consists of the residuals

(5.1) r
(j)
k = H

\Bigl( 
x
(1)
k

\Bigr) 
\cdot x(j)

k  - \mu k

\Bigl( 
x
(j)
k

\Bigr) 
\cdot x(j)

k with \mu k(x) =
xHH(x

(1)
k )x

xHx

for j = 1, . . . , \ell . This is a natural generalization of the formula (3.9) to the block

version, with the leading r
(1)
k = \nabla w\scrF (x

(1)
k )/2 corresponding to the gradient at the

optimizer x
(1)
k . In analogy to the single vector version, we can apply the nonlinear

Rayleigh--Ritz procedure with U = [Xk - 1, Xk, Rk] and define the new block as

(5.2) Xk+1 = [Xk - 1, Xk, Rk]Vk+1,

where Vk+1 consists of eigenvectors for the \ell smallest eigenvalue of the linear problem\widehat H(\widehat vk)v = \lambda \widehat Mv, defined by the solution \widehat vk of the reduced NEPv. The first column

of Vk+1 is set to \widehat vk, so that x
(1)
k+1 is the best approximation by the Rayleigh--Ritz

procedure.
We summarize in Algorithm 5.1 the actual sequential subspace algorithm, with a

few implementation details listed as follows.
(a) Matrix-vector multiplications (MatVec)G[Xk, Pk, Rk] forG \in \{ A,B\} are required

in lines 2, 5, 10, and 13. To avoid recalculations, we can precompute and save,
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Algorithm 5.1. Sequential subspace search for NEPv (2.4).

Input: Coefficient matrices A and B, block size \ell , starting vectors X0 \in \BbbC n\times \ell and
P0 = 0n\times \ell , tolerance tol.

Output: Approximate eigenvector x
(1)
k = Xk(:, 1).

1: for k = 0, . . . do

2: Compute Rayleigh quotients y
(j)
k = \rho (x

(j)
k ) for j = 1, . . . , \ell .

3: if F is differentiable then \{ \% smooth case\} 
4: Compute gradient gk = \nabla F (y

(1)
k ), and \mu 

(j)
k = gTk y

(j)
k for j = 1, . . . , \ell .

5: Compute residual vectors r
(j)
k =

\bigl( 
H(x

(1)
k ) - \mu 

(j)
k I
\bigr) 
x
(j)
k for j = 1, . . . , \ell .

6: Convergence check: if \| r(1)k \| 2 \leq tol, then break.

7: (Optional, \ell \geq 2) Preconditioned expansion: Rk := [r
(1)
k , . . . , r

(\ell  - 2)
k | p(a)k , p

(b)
k ]

by (3.14) or (3.15).
8: else \{ \% nonsmooth case; require \ell = 2s is even\} 
9: Convergence check: if k \geq 1 and F (y

(1)
k ) \geq F (y

(1)
k - 1) then return.

10: Set residuals Rk = [rA(x
(1)
k ), rB(x

(1)
k ), . . . , rA(x

(s)
k ), rB(x

(s)
k )] by (3.16).

11: end if
12: Orthogonalize Rk = orth(Rk).

13: Let Uk = [Xk, Pk, Rk], set \widehat A = UH
k AUk, \widehat B = UH

k BUk, and \widehat M = UH
k Uk.

14: Solve the reduced NEPv ((3.3) for smooth F and (4.4) for nonsmooth F ) for

the eigenvector \widehat vk and \widehat H(\widehat vk).
15: Find eigenvectors Vk+1 = [\widehat vk, \widehat v(2)k , . . . , \widehat v(\ell )k ] corresponding to the \ell smallest

eigenvalues of \widehat H(\widehat vk) - \lambda \widehat M .
16: Update Xk+1 = [Xk, Pk, Rk] \cdot Vk+1.
17: Update Pk+1 = [Pk, Rk] \cdot Vk+1(\ell + 1 : 3\ell , :).
18: end for
19: (Optional) Global verification: compute the smallest eigenvalue \lambda min and the

eigenvector x of H(x
(1)
k ). If \lambda min < \mu 

(1)
k then restart the process with X0 and P0

satisfying X0(:, 1) = x and P0(:, 1) = x - x
(1)
k .

with 4\ell auxiliary vectors, the results of Ak := A[Xk, Pk] and Bk := B[Xk, Pk].
Then the projection in line 13 only needs 2\ell extra MatVecs:

(5.3) Ar
k := A \cdot Rk and Br

k := B \cdot Rk.

In the next iteration, Ak and Bk can be updated (using lines 16 and 17) by

(5.4) Ak+1 = [Ak, A
r
k]Xk and Bk+1 = [Bk, B

r
k]Xk

with

Xk =

\biggl[ 
Vk+1,

\biggl[ 
0

Vk+1(\ell + 1 : 3\ell , :)

\biggr] \biggr] 
.

In this way, only 2\ell MatVecs in (5.3) are required in each iteration. In practice,
to keep numerical error from accumulating in the updating formula (5.4) as k
increases, both matrices are recalculated explicitly every Nrec iterations; e.g.,
Nrec = 50, as used in our numerical experiments.

(b) In line 6, the residual norm of r
(1)
k = \nabla w\scrF (x

(1)
k )/2 (i.e., the gradient) is used for

the stopping criteria. As is common practice in numerical optimization, we can
take tol = \scrO (

\surd 
\epsilon mach) to be on the order of square-root machine precision \epsilon mach.
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1784 DING LU

But this scheme cannot be applied for the nonsmooth case, where the gradient is
not defined. In line 9, we stop the algorithm when the function values \scrF (xk) lose
monotonicity---an indication of accuracy close to machine precision.

(c) For efficiency considerations, we implement the preconditioned extension in line 7

by replacing the last two columns of Rk with p
(a)
k and p

(a)
k (assuming the block

size \ell \geq 3). In this way, the size of search subspace (i.e., [Xk, Pk, Rk]) averaged
by the number of MatVecs (see (a) and (5.3)) in each iteration is

(5.5)
subspace size

\#MatVec
=

3\ell 

2\ell 
=

3

2
.

In comparison, for the naive implementation of appending p
(a)
k , p

(a)
k directly to

Rk := [Rk, p
(a)
k , p

(a)
k ], the algorithm would use a search subspace [Xk, Pk, Rk] of

size 3\ell + 2 and require 2(\ell + 2) MatVecs in (5.3). So the ratio in (5.5) becomes
(3\ell + 2)/2(\ell + 2) < 3/2. Namely, by the same number of MatVecs, the latter
strategy can only search in a smaller subspace.

(d) For the same reason as in (c), we use the s leading rA and rB vectors to define
Rk for nonsmooth F (line 10), assuming the block size \ell = 2s is an even number.

(e) For a smooth F , the reduced NEPv in line 14 can be solved by the SCF iter-
ation in Algorithm 3.1. For a nonsmooth F , convex optimization can be em-
ployed, where the exact algorithm is case dependent but usually cheap to apply
for small-size problems; see, e.g., subsection 6.2 for discussions on the max-ratio
minimization.

6. Numerical experiments. In this section, we demonstrate the performance
of the proposed algorithms with several numerical examples. In subsection 6.1, we
discuss a p-norm distance problem of numerical range, with applications to coercivity
constant computation for boundary element operators. In subsection 6.2, we consider
a nondifferentiable max-ratio minimization problem. All experiments are done in
MATLAB 2017b and run on an HP machine with Intel(R) Xeon(R) CPU E5--2620 v3
@ 2.40GHz and 264 GB memory. No parallelization is applied.

6.1. Smooth objective function. Consider the minimization problem (1.1)
with the objective function F (y) = \| y\| p with p > 1. Geometrically, the minimal value
defines the p-norm distance from the origin (0, 0) to the numerical range W (A,B).
For the case of p = 2, the problem is known as the Crawford number computation,
where the problem also admits the eigenvalue optimization formula

(6.1) min
y\in W (A,B)

\| y\| 2 =

\biggl( 
max

\biggl\{ 
max

\theta \in (0,2\pi ]
\lambda min(A sin \theta +B cos \theta ), 0

\biggr\} \biggr) 
;

see, e.g., [11, Thm. 2.1] and [19, eq. (2.8)]. In our experiment, we will also consider
a general p = 1.1 problem, where no eigenvalue optimization formula such as (6.1)
is available. It is clear that both F 's are convex and differentiable for all y \not = 0.
To apply Algorithm 5.1, we set the tolerance tol = 10 - 8 \approx \surd 

\epsilon mach and solve the
reduced NEPv in line 14 by the SCF iteration in Algorithm 3.1 with tol r = tol and
maxit = 30.

Example 1. This is a small-size example to show the convergence of Algorithm 5.1
without preconditioned expansion. The testing matrices are given by

A = cos(\pi /3)G - 4In, B = sin(\pi /3)G - 2In,
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Fig. 1. Numerical range and the p-norm distance to (0, 0): 2-norm on the left and 1.1-norm
on the right. The nearest points are marked as \circ , with dashed lines being the contour plot of F .
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Fig. 2. The p-norm distance problem in Example 1. Convergence history for 20 randomly
generated starting vectors: Algorithm 5.1 for NEPv (2.4) (solid) and LOBPCG for LEP (3.17)
(dashed).

where G is a Grcar matrix of size n = 120. The numerical range W (A,B) and the
contours of F corresponding to p = 2 and 1.1 are depicted in Figure 1.

In the first experiment, we apply Algorithm 5.1 with the block size \ell = 1 and
randomly generated starting vectors (normally distributed elements with 0 mean and
unit variance). The convergence history is reported in Figure 2, where the relative
error is measured by

| \scrF (xk) - \scrF (x\ast )| /| \scrF (x\ast )| ,

and the ``exact"" minimizer x\ast is computed by SCF iterations applied to the NEPv (2.4).
For comparison, we also depict the convergence history of LOBPCG3 for solv-

ing the LEP (3.17), where the relative error is measured by | \lambda k  - \lambda \ast | /| \lambda \ast | with \lambda \ast 
computed by MATLAB function eig. Note that this can be regarded as verification

3MATLAB code available at https://mathworks.com/matlabcentral/fileexchange/48-lobpcg-m.
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Fig. 3. The p-norm distance problem in Example 1. Boxplots of number of iterations (top) and
number of matrix vector multiplications (bottom) for Algorithm 5.1 (marked as black larger boxes),
and LOBPCG (marked as red smaller boxes) with block size p = 1, 2, 4, 8. Statistics collected from
200 repeated experiments for each p with random starting vectors.

of global optimality for a given x\ast ; see, e.g., subsection 3.3.2. From the reported
result, Algorithm 5.1 solved an NEPv (2.4) in a number of iterations comparable to
LOBPCG for an LEP, and the convergence of Algorithm 5.1 also seems less sensitive
to the choice of initial vectors.

In our second experiment, we test with block size \ell = 1, 2, 4, 8. For each \ell ,
the algorithms are repeatedly applied 200 times using random starting vectors. The
computation results are reported in Figure 3. We can observe a great reduction in
the numbers of iterations and their variance as the block size \ell grows, whereas the
total number of MatVecs slightly increases since each iteration needs more MatVecs.
The performances are also similar to LOBPCG for the LEP (3.17).

Example 2. We consider the preconditioned expansion schemes discussed in sub-
section 3.3.1. For the testing, Algorithm 5.1 is applied to the same problem as in Ex-
ample 1, with the preconditioned expansion in line 7 turned on. In Figure 4, we
illustrate in the left plot the superlinear convergence when (3.14) is applied, which
is consistent with our theoretical analysis in Theorem 3.3. In the other two plots,
we report the performance of inexact expanding vectors, computed by a few steps of
MATLAB gmres (only the 2-norm case is reported, the performance for p = 1.1 is
similar). Both formulas (3.14) and (3.15) are tested. The former seems more affected
by the error in the expanding vectors; it generally converges faster when the accuracy
increases.

Example 3. In this example, we consider the problem of computing the coercivity
constant for boundary integral operators in acoustic scattering [5, 26]. The major
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Fig. 4. Convergence history of preconditioned expansion for the 2-norm problem with 20 ran-
dom starting vectors. Left: Formula (3.14). Middle and right: Formulas (3.14) (solid) and (3.15)
(dashed), with expansion vectors computed inexactly by running 4 and 10 steps of GMRES, respec-
tively.

computation task is to evaluate

\gamma (L) := min
u \not =0

| uHLu| 
uHu

= min
u \not =0

\Biggl( \bigm| \bigm| \bigm| \bigm| uHAu

uHu

\bigm| \bigm| \bigm| \bigm| 2 + \bigm| \bigm| \bigm| \bigm| uHBu

uHu

\bigm| \bigm| \bigm| \bigm| 2
\Biggr) 1/2

,

where A = (L + LH)/2, B = (L  - LH)/2\jmath , and L is a discrete boundary integral
operator (matrix) of

a\nu (u, v) =

\int 
\Gamma 

B\nu u(y) \cdot v(y) ds(y), with B\nu = I +K\nu  - \jmath \nu S\nu ,

where \nu > 0 is the wave number, \Gamma is the boundary of a sound-soft bounded obstacle
in \BbbR 3, u(x), v(x) \in L2(\Gamma ), I is the identity operator, and K\nu and S\nu are defined by

K\nu u(x) = 2

\int 
\Gamma 

\partial \Phi (x, y)

\partial n(x)
u(y) ds(y), S\nu u(x) = 2

\int 
\Gamma 

\Phi (x, y)u(y) ds(y), x \in \Gamma .

Here, \Phi (x, y) = e\jmath \nu | x - y| /(2\pi | x  - y| ) for x, y \in \BbbR 3, x \not = y, and n(x) is the outpoint
unit normal at \Gamma .

In the following test, we consider two different geometries of \Gamma shown in Figure 5
(smooth and nonsmooth) as well as three wave numbers \nu = 1, 2, 5. Each coefficient
matrix L(\nu ) is generated by the Galerkin boundary element library BEM++,4 with
triangular mesh (generated by gmsh5 with Delaunay's algorithm) and piecewise linear
basis functions; see [40] for details about the discretization method. For convenience,
we use a relatively coarse mesh size h = 0.1.

To solve the problem, we applied Algorithm 5.1 with block size \ell = 3. Both the
standard and preconditioned versions (labeled pcd) are tested, where the precondi-
tioning formula (3.15) is applied with Tk \approx (H(xk) - \lambda kI)

 - 1 using

Tk = (A\scrH \cdot F1(xk) +B\scrH \cdot F2(xk) - \lambda kI)
 - 1

,

4The software is available from http://www.bempp.org/.
5The software is available from http://gmsh.info/.
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Fig. 5. The geometry of \Gamma and the corresponding numerical range of the discrete operator L(\nu ).

where \lambda k = (xH
k H(xk)xk)/(x

H
k xk), and A\scrH and B\scrH are hierarchical matrix approxi-

mations [17] of A and B (generated by BEM++ using a truncation threshold 0.1). To
reduce cost, we apply Tkx by running 10 steps of GMRES instead of solving exactly.
This can be done very efficiently since each A\scrH x (and B\scrH x) takes around 10\% of the
timing of Ax (and Bx). We repeated the experiment 15 times with random starting
vectors. The iteration number and timing statistics (mean and max deviation over
the repeated experiments) are reported in Tables 1 and 2.

For comparison, we have also applied the full subspace algorithm developed in [26],
which is based on the eigenvalue optimization formula in (6.1). In each iteration, it
solves a Hermitian LEP for the smallest eigenvalue, done by LOBPCG6 using the same
block size, \ell = 3, as Algorithm 5.1. For comparison, we have also applied LOBPCG
with preconditioner (using Tk from above with \lambda k replaced by an underestimate of the
Crawford number available in the full subspace algorithm). From Tables 1 and 2, the
algorithm is significantly accelerated by preconditioning although still slower than Al-
gorithm 5.1. In the best case, the full subspace algorithm converges in fewer MatVecs

6For efficiency of the full subspace algorithm, we use the eigenvectors from the last iteration to
initialize each call to LOBPCG. Since the inner eigenvalue problems need not be solved accurately,
we start with a low tolerance 10 - 6 for LOBPCG and gradually increase it to 10 - 12 upon convergence
of the full subspace algorithm.
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Table 1
Computation results for Example 3: Peanut-shaped domain; size n = 18, 060.

\nu \gamma (L(\nu )) its MatVec Timing (s)

1

Alg. 1 in [26] 3.231643542030261E-01 5 1188 1810
Alg. 1 in [26](\ttp \ttc \ttd ) 3.231643542030258E-01 5 366 839
Alg. 5.1 3.231643542030256E-01 (\pm 1E-15) 47(\pm 4) 286(\pm 28) 426 (\pm 40)
Alg. 5.1(\ttp \ttc \ttd ) 3.231643542030258E-01 (\pm 3E-16) 15(\pm 4) 88(\pm 22) 175 (\pm 40)

2

Alg. 1 in [26] 3.227569492274415E-01 5 822 1277
Alg. 1 in [26](\ttp \ttc \ttd ) 3.227569492274416E-01 5 252 592
Alg. 5.1 3.227569492274416E-01 (\pm 4E-16) 62(\pm 6) 378(\pm 36) 567 (\pm 54)
Alg. 5.1(\ttp \ttc \ttd ) 3.227569492274415E-01 (\pm 3E-16) 15(\pm 2) 94(\pm 16) 182 (\pm 23)

5

Alg. 1 in [26] 1.985483883517590E-01 6 1032 1168
Alg. 1 in [26](\ttp \ttc \ttd ) 1.985483883517590E-01 6 504 597
Alg. 5.1 1.985483883517627E-01 (\pm 3E-15) 56(\pm 6) 342(\pm 36) 503 (\pm 61)
Alg. 5.1(\ttp \ttc \ttd ) 1.985483883517589E-01 (\pm 3E-16) 15(\pm 2) 93(\pm 12) 183 (\pm 24)

Table 2
Computation results for Example 3: L-shaped domain; size n = 16, 116.

\nu \gamma (L(\nu )) its MatVec Timing (s)

1

Alg. 1 in [26] 1.719991140659281E-01 6 2562 3108
Alg. 1 in [26](\ttp \ttc \ttd ) 1.719991140659281E-01 6 474 907
Alg. 5.1 1.719991140659368E-01(\pm 7E-15) 81(\pm 13) 490(\pm 76) 588(\pm 89)
Alg. 5.1 (\ttp \ttc \ttd ) 1.719991140659283E-01(\pm 3E-16) 22(\pm 3) 130(\pm 16) 212(\pm 26)

2

Alg. 1 in [26] 1.950697449793223E-01 6 3126 3767
Alg. 1 in [26](\ttp \ttc \ttd ) 1.950697449793218E-01 6 528 1022
Alg. 5.1 1.950697449793266E-01(\pm 3E-15) 104(\pm 13) 634(\pm 82) 762(\pm 95)
Alg. 5.1 (\ttp \ttc \ttd ) 1.950697449793223E-01(\pm 4E-16) 23(\pm 2) 138(\pm 12) 231(\pm 19)

5

Alg. 1 in [26] 2.100416346643941E-01 7 1896 2334
Alg. 1 in [26](\ttp \ttc \ttd ) 2.100416346643939E-01 7 456 897
Alg. 5.1 2.100416346643952E-01(\pm 6E-16) 80(\pm 8) 486(\pm 48) 585(\pm 57)
Alg. 5.1 (\ttp \ttc \ttd ) 2.100416346643941E-01(\pm 3E-16) 27(\pm 3) 160(\pm 16) 267(\pm 25)

than Algorithm 5.1 (no preconditioning), but each of its MatVecs is more costly due
to the extra preconditioning step.

6.2. Nonsmooth objective function. We consider the max-ratio minimiza-
tion problem with F (y) := max\{ y1, y2\} , which is nondifferentiable at y with y1 = y2.
To apply Algorithm 5.1, the reduced problem in line 14 will be solved by the equiv-
alent eigenvalue optimization problem in the following lemma, for which a similar
result can be found in [15].

Lemma 6.1. Given Hermitian matrices A and B \in \BbbC n\times n, the following hold.
(a) It holds that

(6.2) min
x\in \BbbC n

max

\biggl\{ 
xHAx

xHx
,
xHBx

xHx

\biggr\} 
= max

t\in [0,1]
\lambda min

\Bigl( 
tA+ (1 - t)B

\Bigr) 
.

(b) Let t\ast be an optimizer of (6.2) and x\ast be the eigenvector corresponding to the
smallest eigenvalue \lambda \ast of

(6.3) H(x\ast ) := A(1 - t\ast ) +Bt\ast .

It holds that [ t\ast 
1 - t\ast 

] \in \partial F (\rho (x\ast )) for F (y) := max\{ y1, y2\} .
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Fig. 6. Convergence history with 20 randomly generated starting vectors: Algorithm 5.1 for the
NEPv (2.4) (solid); LOBPCG for computing the smallest eigenvalue of H(x\ast ) in (6.3) (dashed).

Proof. The proof is deferred to Appendix B.

The eigenvalue optimization (6.2) is convex in t \in \BbbR [35]; therefore, it can be
conveniently solved, at least for problems with a small-size n, by golden section search
(e.g., the MATLAB function fminbd) or other eigenvalue optimization techniques (see,
e.g., [31]). In our implementation, we adopt the level-set based criss-cross search [6]
for the maximizer, which works quite well in the numerical experiments.

For the testing problem, we consider a multicast transmit beamforming prob-
lem [39] in a simple setting in which the base station sends a common signal to two
receivers a and b using n antennas, where a max-ratio minimization problem has to be
solved. A detailed description of the coefficient matrices can be found in Appendix C.
For convenience, we use the block size \ell = 2 in Algorithm 5.1 for the computation.

Example 4. In the first experiment, we consider a small-size problem of n = 120.
The Rayleigh quotients at the optimizer \widehat x, computed by solving the eigenvalue opti-
mization (6.2) directly, are given by

\widehat xHA\widehat x\widehat xH\widehat x =  - 11.27112794653678,
\widehat xHB\widehat x\widehat xH\widehat x =  - 11.27112794653939.

Hence, \widehat x is a numerically nonsmooth point of \scrF (x). The convergence history of Algo-
rithm 5.1 is reported in Figure 6, where for the relative error the ``exact"" eigenvalue
is computed using the eigenvalue optimization formula (6.2). For comparison we also
applied LOBPCG (with the same block size of 2) to compute the smallest eigenvalue
of the Hermitian matrix H(x\ast ) at the optimizer in (6.3). Again we observe a similar
convergence rate for both algorithms.

Example 5. We now test with larger problem sizes n = 1000, 2000, 4000. In the
experiment, we treat matrices A and B as linear operators and only allow for matrix-
vector (or matrix-matrix) multiplication in computation. The testing results for 20
repeated experiments with random starting vectors are reported in Table 3. Recall
that the max-ratio minimization problem can also be reformulated and solved as an
eigenvalue optimization problem in (6.2). For comparison, we applied the leigopt7

to obtain the solution (with convergence tolerance tol = 10 - 13). This algorithm is
based on the subspace framework presented in [23], and in each iteration it needs to
solve a large-scale LEP, which is done by the MATLAB function eigs.

7Available at http://home.ku.edu.tr/\sim emengi/software.html. We slightly modified the calling of
the \tte \tti \ttg \tts function to accept linear operators as input.
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In all testing cases, Algorithm 5.1 used fewer MatVecs, which accounts for the
dominant cost for both algorithms as the problem size n grows. For leigopt, the
percentages of time spent for MatVecs are about 72\%, 84\%, and 90\% for n to be
1000, 2000, and 4000, respectively. From Table 3, we can also observe that the saving
of Algorithm 5.1 in computing time is more than that in the number of MatVecs. Take
n = 2000, for example; the ratio between the MatVecs of Algorithm 5.1 and leigopt

is 1770/3082 \approx 0.57, whereas that for the computation time is 7.7/23.3 \approx 0.33. This
difference is largely because of the block operations: The 1770 MatVecs (on average)
in Algorithm 5.1 are executed as approximately 1770/2 = 885 number of matrix-
matrix multiplications A \cdot Rk and B \cdot Rk, rather than 1770 sequential MatVecs. On a
hierarchical memory machine, the block multiplication is more efficient since it uses
a level-3 BLAS operation. Such a block operation, however, is not exploited by the
MATLAB function eigs in leigopt.

Table 3
Computation results for Example 5.

n Optimal value its MatVec Timing (s)

1000
leigopt -1.15337555620605E+01 6 1772 3.0
Alg. 5.1 -1.15337555620603E+01(\pm 1E-13) 229(\pm 87) 903(\pm 357 ) 1.4 (\pm 0.5)

2000
leigopt -1.15372647515872E+01 6 3082 23.3
Alg. 5.1 -1.15372647515869E+01(\pm 4E-13) 435(\pm 81) 1770(\pm 330) 7.7 (\pm 1.7)

4000
leigopt -1.15381560642041E+01 7 5760 159.8
Alg. 5.1 -1.15381560642033E+01(\pm 1E-12) 809(\pm 258) 3295(\pm 1053) 49.7(\pm 16)

7. Conclusions. We studied a convex minimization problem over the joint nu-
merical range of a pair of Hermitian matrices. For such problems, we have established
a nonlinear eigenvalue problem characterization for the global optimizer. Iterative
methods based on locally optimal subspace search were introduced, with both smooth
and nonsmooth objective functions considered. The convergence of the algorithms,
as well as their implementation details, were also discussed. The effectiveness and
efficiency of the proposed nonlinear eigenvector approach have been demonstrated
by numerical examples for computing the coercivity constant of boundary integral
operators and solving multicast beamforming problems.

The theory and algorithms considered in this paper can be naturally extended to
convex minimization over the joint numerical range of a d-tuple of Hermitian matrices
Ai \in \BbbC n\times n for i = 1, . . . , d,

W (A1, A2, . . . , Ad) =

\biggl\{ \bigl( 
xHA1x, x

HA2x, . . . , x
HAdx

\bigr) 
: x \in \BbbC n, \| x\| 2 = 1

\biggr\} 
,

provided that the considered joint numerical range is a convex set in \BbbR d. Such an
assumption holds in particular in the case of d = 3 and n \geq 3 as shown in [14], while
for more general cases of d \geq 3, the convexity can hold in certain conditions (see,
e.g., [29, 16]). Under the convexity assumption, most of the results in this paper can
be applied, but a detailed technical treatment is beyond the scope of this paper and
is left for future research.

Appendix A. Proof of Theorem 3.3. We will use boldface letters for the
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augmented real variables of a complex vector x \in \BbbC n and a matrix X \in \BbbC n\times n:

(A.1) x =

\biggl[ 
Re(x)
Im(x)

\biggr] 
, x =

\biggl[ 
 - Im(x)
Re(x)

\biggr] 
\in \BbbR 2n, and X =

\biggl[ 
Re(X)  - Im(X)
Im(X) Re(X)

\biggr] 
\in \BbbR 2n\times 2n.

Let y = Xx and z = \jmath Xx; it is straightforward to verify that y = Xx and z = Xx.
Let \lambda = \alpha + \jmath \beta . By separating the real and imaginary parts of the NEPv (2.4)

and the normalization xH
\ast x = 1, the eigenpair (\lambda \ast , x\ast ) satisfies the augmented real

system

G(x, \alpha , \beta ) :=

\left[  H(x)x - \Lambda x
1 - xT

\ast x
0 - xT

\ast x

\right]  = 0,

where

\Lambda =

\biggl[ 
\alpha In  - \beta In
\beta In \alpha In

\biggr] 
and H(x) = F1(\rho (x)) \cdot A+ F2(\rho (x)) \cdot B

with \rho (x) =
\bigl[ 
xTAx,xTBx

\bigr] T
. Let (xk, \alpha k + \jmath \beta k) with xH

\ast xk = 1 be an approximate
eigenpair. Starting with (xk, \alpha k, \beta k), a Newton iteration applied to G(x, \alpha , \beta ) yields
(A.2)

Jk \cdot 

\left(  \left[  xnt

\alpha nt

\beta nt

\right]   - 

\left[  xk

\alpha k

\beta k

\right]  \right)  =  - 

\left[  rk0
0

\right]  with Jk :=

\left[  H(xk) - \Lambda k + S(xk)  - xk  - xk

 - xT
\ast 0 0

 - xT
\ast 0 0

\right]  ,

where rk = H(xk)xk  - \Lambda kxk and S(x) := 2[Ax,Bx] \cdot \nabla 2F (\rho (x)) \cdot [Ax,Bx]T \succeq 0.
Provided H(xk) - \lambda kI is nonsingular and \lambda k \not = 0, we can obtain from the leading 2n
elements that

xnt =  - 
\bigl( 
H(xk) - \Lambda k

\bigr)  - 1 \cdot 
\bigl( 
(\Lambda k  - \Lambda nt)xk + S(xk) \cdot (xnt  - xk)

\bigr) 
\in span

\bigl\{ 
(H(xk) - \Lambda k)

 - 1[xk,xk,Axk,Axk,Bxk,Bxk]
\bigr\} 

= span
\bigl\{ 
xk,xk,p

(a)
k ,p

(a)
k ,p

(b)
k ,p

(b)
k

\bigr\} 
,(A.3)

where in the second equation we used Range(S(xk) \subset span([Axk,Bxk]) as well as
Range(\Lambda x) \subset span([x,x]). In the last equation, the trailing four vectors are the

augmented real vectors of p
(a)
k , p

(b)
k defined in (3.14), respectively. Equation (A.3) can

be verified by a left multiplication of H(xk) - \Lambda k; notice that this matrix is the real
augmentation of H(xk)  - \lambda kI. By writing the real xnt back to a length-n complex

vector xnt, we obtain xnt \in span
\bigl\{ 
xk, p

(a)
k , p

(b)
k

\bigr\} 
included in the subspace (3.13).

For the quadratic convergence of Newton's methods, it remains to show the Ja-
cobian J(x\ast , \alpha \ast , \beta \ast ) is nonsingular; see, e.g., [34, Thm. 11.2]. By the simplicity of \lambda \ast ,
the matrix H(x\ast )  - \lambda \ast I is positive semidefinite with the null space spanned by x\ast .
Hence, the real augmentation H(x\ast ) - \Lambda \ast is positive semidefinite with the null space
span\{ x\ast ,x\ast \} . Let z = [z1; z2] \in \BbbR 2n+2, with z1 \in \BbbR 2n and z2 \in \BbbR 2, be a solution to
J(x\ast , \alpha \ast , \beta \ast )z = 0. We obtain immediately z1\bot span\{ x\ast ,x\ast \} . It follows that

0 = zTJ(x\ast , \alpha \ast , \beta \ast )z = zT1 (H(x\ast ) - \Lambda \ast + S(x\ast ))z1 \geq zT1 (H(x\ast ) - \Lambda \ast )z1 \geq 0.

Then the positive semidefiniteness of H(x\ast )  - \Lambda \ast implies z1 \in span\{ x\ast ,x\ast \} ; hence,
z1 = 0. Plugging this into J(x\ast , \alpha \ast , \beta \ast )z = 0, we obtain [x\ast ,x\ast ]z2 = 0; hence, z2 = 0.
So z = 0 is the only solution to J(x\ast , \alpha \ast , \beta \ast )z = 0, and the Jacobian is nonsingular.

Recall that the subspace (3.13) is invariant if we multiply xk by a nonzero scalar.
For tan\angle (xk, x\ast ) sufficiently small, we can assume xk = x\ast + \scrO (| tan\angle (xk, x\ast )| ),
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and the shift \lambda k = bHH(xk)xk

bHxk
= \lambda \ast +\scrO (| tan\angle (xk, x\ast )| ) by the smoothness of H. So

the real augmentation (xk, \alpha k, \beta k) = (x\ast , \alpha \ast , \beta \ast ) +\scrO (| tan\angle (xk, x\ast )| ). It follows that
(xnt, \alpha nt, \beta nt) = (x\ast , \alpha \ast , \beta \ast ) + \scrO (| tan\angle (xk, x\ast )| 2) by the quadratic convergence of
Newton's methods. Writing xnt \in \BbbR 2n back to its complex representation xnt \in \BbbC n,
we complete the proof.

Appendix B. Proof of Lemma 6.1. A result similar to Lemma 6.1 was estab-
lished in [15], where the optimizing parameter t is on \BbbR . By exploiting the convexity of
the numerical range W (A,B), we can simplify the proof and obtain a bounded region
for the parameter t, rendering the optimization problem more tractable in practice.
(a) We can reformulate the left-hand side as

min
x\in \BbbC n

max

\biggl\{ 
xHAx

xHx
,
xHBx

xHx

\biggr\} 
= min

y\in W (A,B)
max

\biggl\{ 
y1, y2

\biggr\} 
= min

y\in W (A,B)
max
t\in [0,1]

ty1 + (1 - t)y2.

Note that W (A,B) is convex, and f(t, y) = ty1 + (1  - t)y2 is linear in t and
y, respectively. By von Neumann's minimax theorem, the min and max in the
equation above can switch positions; namely

(B.1) min
y\in W (A,B)

max
t\in [0,1]

f(t, y) = max
t\in [0,1]

min
y\in W (A,B)

f(t, y).

The inner minimization satisfies

min
y\in W (A,B)

f(t, y) = min
x\in \BbbR n

xT (tA+ (1 - t)B)x

xTx
= \lambda min

\Bigl( 
tA+ (1 - t)B

\Bigr) 
,

where the last equation is by the eigenvalue minimization principle.
(b) Due to the minimax relation (B.1) above, we have (t\ast , \rho (x\ast )) as an equilibrium

point of the minimax problem. Therefore, it holds that

f(t\ast , \rho (x\ast )) = min
y\in W (A,B)

max
t\in [0,1]

f(t, y) = max
t\in [0,1]

f(t, \rho (x\ast )) = F (\rho (x\ast )).

It is straightforward to verify that for all y it holds that

F (y) = max
t\in [0,1]

f(t, y) \geq f(t\ast , y) = f(t\ast , \rho (x\ast )) + f(t\ast , y  - \rho (x\ast ))

= F (\rho (x\ast )) + [t\ast , (1 - t\ast )] \cdot (y  - \rho (x\ast )).

Hence, by the definition of the subgradient, it holds that [t\ast , (1 - t\ast )]
T \in \partial F (\rho (x\ast )).

Appendix C. Data matrix generation for subsection 6.2. Following the
problem setting in [21, sect. C] we arrive at a quadratic optimization problem,

min
w\in \BbbC n

wHw, s.t. wHRaw \geq \sigma 2
a\tau a, wHRbw \geq \sigma 2

b \tau b,

where \tau a, \tau b, \sigma a, \tau b are prescribed parameters, and in the case when the antenna
array is linear and the receivers are located at \theta a and \theta b relative array broadside, the
covariance matrices Ri \in \BbbC n\times n are defined with (\ell , p) elements

(C.1) [Ri]\ell p = exp

\biggl( 
\pi \jmath (\ell  - p) sin \theta i

\biggr) 
\cdot exp

\biggl( 
 - (\pi (\ell  - p)si cos \theta i)

2

2

\biggr) 
for i = \{ a, b\} ,
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where si is the spread angle of local scatterers for user i; see, e.g., [4] for details. For
convenience, we use parameters \theta a =  - 5\circ , \theta b = 10\circ , si = 2\circ , and \tau i = 1/\sigma 2

i in our
experiment.

A straightforward derivation shows that the quadratic optimization from above
can be reformulated as8

(C.2) min
w\in \BbbC n

\biggl( 
max

\biggl\{ 
wHAw

wHw
,
wHBw

wHw

\biggr\} \biggr) 
with A =  - Ra

\sigma 2
a\tau a

, B =  - Rb

\sigma 2
b \tau b

.
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