
AP Calculus BC Project 
Atmospheric Pressure 

Atmospheric pressure on the Earth's surface is due to the weight of the atmosphere 
above that point. Let's consider a column of air over a one square inch section extending 
upward from the Earth's surface without stopping. 

 
This column of air has weight. The weight of this column of air in pounds is numerically 
equal to the atmospheric pressure in pounds per square inch (psi) at the surface.  To 
understand this we only need to know that pressure is force per unit area. We have 
already discussed the fact that weight is force. So at any height x above the surface of the 
Earth, the atmospheric pressure at that height is numerically equal to the weight of that 
part of the air column above height x.  Thus, we can see why the air pressure decreases 
as our altitude increases – there is less air above us at higher altitudes. 

We will construct two different mathematical models of atmospheric pressure. The first 
model is simplified since it does not take into account the variation of temperature with 
pressure. We use it though to prepare for the second model which will take temperature 
variation into account. 

The Simplified Model 
Let's consider a column of air as described above. Let 

• P0 denote the total weight of this column in pounds; 
• ( )P x  denote the atmospheric pressure in pounds per square inch at x inches 

above the surface of the Earth, for any 0x ≥ ; and 
• ( )w x  denote the weight, in pounds, of that portion of the column from the 

surface to the height of x inches above the surface, for any 0x ≥ . 

It should be clear from these definitions that the following equations hold: 
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You should notice that as x increases the function ( )P x  decreases at the same time that 
the function ( )w x  increases. 
This should come as no surprise 
since their sum is a constant. To 
make the mathematics nicer, we 
will assume that these functions 
are each continuously differenti-
able.  

If we were to weigh samples of 
air at various altitudes we would 
normally find that for a fixed 
volume, samples of air taken at 
low altitudes are heavier than 
samples taken at higher altitudes. 
For any 0x ≥  let ( )xρ  denote 
the weight of a cubic inch of air 
in our column at the height x 
inches above the surface of the 
Earth. This is called the 
atmospheric density at height x. Under normal conditions ρ  is a decreasing function 
of x.  

Put 0 (0)ρ ρ= , the atmospheric density at the surface of the column. Now, how fast does 
the weight of the air in the column change as we change the height? This is the 
difference quotient: 

( ) ( )
.

w x x w x
x

+ Δ −
Δ

 

Since the density is the weight of a cubic inch of air at height x, we see that this 
difference quotient is just the average density of the air in pounds per cubic inch in that 
part of the column. Since,  
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and this represents the density of the atmosphere at height x, which is just ( )xρ , we 
have 

( ) ( )w x xρ′ = . 

If we differentiate our first equation and apply this above equation we see that 

( ) ( ) for any 0.P x x xρ′ = − ≥  

Now we will make two simplifying assumptions to construct our model of the 
atmosphere: 

x 
has weight w(x) 

has weight P(x) 



1. The chemical composition of the atmosphere is uniform and independent of the 
height. This means that we are assuming that the ratios of the various gasses that 
make up the atmosphere are independent of the height. 

2. The temperature of the atmosphere is independent of the height. 

Now, we will apply these assumptions along with the assumption that the atmosphere is 
an ideal gas so we can apply Boyle's Law. This states that the density of a gas is 
proportional to its pressure. Thus, for any 0x ≥  
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Combining this with the previous equation gives us the following differential equation: 
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We know how to solve this differential equation.  You should solve the equation and you 
will have a solution that works for any 0x ≥ . The solution relates the atmospheric 
pressure with height. For the sake of practicality we need to modify our solution so that 
x is measured in feet rather than inches. Thus, our solution should look like: 
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Given the assumptions of this section and given that 0 14.7P =  psi and 5
0 4.34 10ρ −= ×  

lbs/cu in, find the atmospheric pressure at 20,000 feet. 

Problem 1:  Given the assumptions of this section and the values of 0P  and 0ρ  from 
above, at what height is the atmospheric pressure ½  of the pressure at the surface. 

Problem 2:  Given that 0 14.7P =  psi and that the Earth's radius is 3,960 miles, what 
is the total weight of the Earth's atmosphere in tons. The surface area of a sphere is 
given by 24S rπ= . 

A More Complicated Model 
In this model we will delete the second assumption about the independence of 
temperature and altitude from the first model.  We will measure temperature in degrees 
Kelvin, the absolute scale. The relationship between degrees Kelvin and degrees Celsius 
is  

273.1C K= −  

In the Kelvin system 0° K is absolute zero — all motion even at the atomic level stops. 
Water freezes at 273.1° K and boils at 373.1° Kelvin.  Using the standard change from 



Celsius to Fahrenheit with the above equation, the relationships between Fahrenheit 
and Kelvin are given by: 
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For any 0x ≥  let ( )T x  denote the temperature in degrees Kelvin of the atmosphere at 
height x in inches above the surface of the planet. Let 0 (0)T T=  be the temperature at 
the surface.  In the previous section we applied Boyle's Law of ideal gasses to get our 
differential equation.  Since we are including the information about temperature in this 
model, we will need to impose another law on our atmosphere: Charles’ Law of Ideal 
Gasses states that the gas density varies inversely with temperature when measured on 
an absolute scale, such as the Kelvin scale. (This is the reason for working in degrees 
Kelvin.) Thus, the density of the atmosphere is given by 

0 0

0

( )
( ) .

( )
T P x

x
P T x
ρ

ρ =  

Hence 

0 0

0

( )
( ) ( )

TP x
P x P T x

ρ′
= −  

Thus, for any 0x ≥  we have 
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where x is the height in inches above the surface of the Earth. Adjusting the formula as 
in the previous section for measuring x in feet is just a change of variables and we get 
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where x is measured in feet and ( )T x  is the temperature at a height of x feet above the 
surface of the Earth. 

General aviation pilots use the rule: 

The temperature of the atmosphere decreases linearly with 
height at a rate of 2° C (Celsius) per 1,000 feet of altitude. 

Since a difference of 2° Celsius is the same as a difference of 2°  Kelvin, we can translate 
this rule into the formula: 



0( ) .002T x T x= −  

where x is height measured in feet. 

Problem 3:  Now we have enough to find the pressure. If 0 14.7P =  psi, 5
0 4.34 10ρ −= ×

lbs/cu in and 0 293T °= K, 

1. what is the atmospheric pressure at 20,000 feet above the surface of the Earth? 
2. at what height is the atmospheric pressure half of the surface pressure? 

How do these answers compare with those of the first model? 

An Application to Meteorology 
We would normally expect that the density ( )xρ  of the atmosphere would decrease as x 
increases. Under these conditions we call the atmosphere stable.  Otherwise, we call the 
atmosphere unstable.  In an unstable atmosphere a given volume of air above would 
weigh at least as much as an equal volume of air below. Under these circumstances there 
would be a vertical motion of air causing winds and down drafts. We said that the 
atmosphere is unstable if ρ  is non-decreasing, or if 

( ) 0xρ′ ≥ . 

Under the assumptions of our second model, we know that 
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and we have just found 
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where x is measured in feet and T is measured in degrees Kelvin. Since the atmosphere 
is unstable if ( ) 0xρ′ ≥ . 
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Differentiate ρ  with respect to x, simplify it, and find where the derivative is 0. 

Thus, the atmosphere is unstable if 

0 0

0

12
( ) .

T
T x

P
ρ−′ ≤  

Assume that T drops linearly with height, 0 70T °= F, 5
0 4.34 10ρ −= ×  lbs/cu in, and 

0 14.7P =  psi. Find the maximum temperature at 1,000 feet so that the atmosphere is 
unstable.  The assumption of linearity requires that 
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for some positive constant k. Thus, by our inequality we have 

0 0

0

12

0.0104

T
k

P
k

ρ−
− ≤

≥

 

To achieve maximum temperature, we will require that k be as small as possible, 
k=0.0104, and so  

( ) 294.2111 0.0104 .T x x= −  

Thus, for x = 1000, we have T(1000) = 283.8111° K or 51.28° F.  Note that this gives a 
temperature drop of 10.4° Celsius per 1,000 feet, or 18.7° Fahrenheit per 1,000 feet. 

Problem 4:  Assuming our second model, 0 14.7P = , 5
0 4.34 10ρ −= × , and 0 92T = ° F, 

what is the atmospheric pressure at 10,000, 20,000, 30,000, 40,000, 50,000 feet? 
How about at 8 miles and 20 miles? 

Problem 5:  Assume the second model and the data in Problem 4. What is the 
maximum temperature at 36,000 feet so that the atmosphere could be unstable? 


