
 P a g e  | 1 

AP Calculus BC Project  
Sunshine Power and Energy 

In this lab we will study the intensity of the sunshine and the amount of solar energy at a 
particular point on the surface of the earth and the length of daylight. 

Energy and Power 
Energy appears in various forms and can often be converted from one form into 
another.  For instance, a solar cell converts the energy in light into electrical energy; a 
fusion reactor, in changing atomic structures, transforms nuclear energy into heat 
energy. 

Energy is an extensive quantity.  This means that, for instance, the longer a generator 
runs, the more electrical energy it produces; the longer a light bulb burns, the more 
energy it consumes. The rate with respect to time at which some form of energy is 
produced or consumed is called the power output or input of the energy conversion 
device.  Power is an instantaneous or intensive quantity.  By the Fundamental Theorem 
of Calculus we can compute the total energy transformed between times a and b by 
integrating the power from a to b. 

Power is the rate of change of energy with respect to 
time: 

.
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The total energy over a time period is the integral of 
power with respect to time: 

.
b

a
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A common unit of measurement for power is the watt, which equals 1 joule per second.  
One horsepower is equal to 746 watts.  The kilowatt-hour is a unit of energy equal to 
the energy obtained by using 1000 watts for 1 hour---that is, 3,600,000 joules. 

Integrating Sunshine 
If we have a horizontal square meter of surface, then the rate at which solar energy is 
received by this surface — that is, the intensity of the solar radiation — is proportional to 
the sine of the angle A of elevation of the sun above the horizon.  Thus, the intensity is 
highest when the sun is directly overhead ( / 2A π= ) and reduces to zero at sunrise and 
sunset. 
Thus, the total energy received on day T must be the product of a constant (which can be 
determined only by experiment, and which we will ignore) and the integral 
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where t is the time of day measured in hours from noon and 0( )t T  and 1( )t T  are the 
times of sunrise and sunset on day T. Note that when the sun is below the horizon, 
although sin( )A  is negative, the solar intensity is simply zero. 

The Sunshine Formula 
We will have to work with the following variables: 

A the angle of elevation of the sun above the horizon; 
l the latitude of a place on the earth's surface; 
α  inclination of the earth's axis (23.5° or 0.41 radians); 
T time of year, measured in days from the first day of summer in the northern 

hemisphere (June 21); 
t time of day, measured in hours from noon.1 
 

The formula for sin( )A  is: 
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Applications 

At the time of sunset, call it S, we have 0A = .2  Thus, 
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Solve this equation for S. There are two solutions, but S>0 since sunset occurs after 
noon. Then we get our sunset formula  
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Now, to apply this let's compute the time the sun sets on July 1 here in 

                                                   
1 By noon we mean the moment at which the sun is highest in the sky. To find the correct noon find the 
times of sunrise and sunset and find the time halfway between these two times. It may not be 12:00 but 
should change very slowly from day to day, ignoring changes to daylight savings time. 
2 If / 2 | | / 2lπ α π− < <  (inside the polar circles), there will be some values of t for which the right-hand 
side of the formula for sin(A) does not lie in the interval [-1,1]. On the days corresponding to these values 
of t, the sun will never set (midnight sun). If / 2l π= ± , then tan( )l = ∞ , and the right-hand side does not 
make sense at all.  This reflects the fact that, at the poles, it is either light all day or dark all day, 
depending upon the season. 
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Charlotte---latitude 35°15'.  Thus, l=35.25°, 23.5α = °, and T=11.  Substitute these values 
into the sunset formula and we get 
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You should get $7.167$ hours after noon, or 7:10:01 if noon is at 12:00. 

Exercise 1: According to the Charlotte Observer sunrise and sunset for September 20 
were: 

Sunrise   7:10 am 
Sunset   7:24 pm 

1. Find the actual noon time in Charlotte on September 20. 
2. Find the sunset time from the sunset formula. How does this time compare to 

the time given above? 

Now for a fixed point here on the surface of the earth, sunset time S may be considered 
as a function of T.  When is S the greatest and the least?  We only need to differentiate S.   

Exercise 2: Find dS
dT

. 

The critical points of S occur when 2 / 365 0, ,Tπ π=  or 2π . Thus, 0T = , 365 / 2T =  or
365T = .  These correspond to the first day of summer and the first day of winter. For 

the northern hemisphere, tan( ) 0l > , so we find from the first derivative test that T=0 
(or 365) is a local maximum and 365 / 2T =  is a local minimum. Plot the sunset 
function for Charlotte: 

Charlotte
35.25 23.5

,  into 
180 180

a sunsetS substitute l π π⎡ ⎤=⎢ ⎥⎣
=

⎦
=  

Then plot this function for S between 0 and 365.  Is the graph shaped like you would 
expect it to be? 

The derivative measures the rate of change of sunset with respect to the time of year.  
How does this change? What are the changes that we might expect? How does the day 
lengthen or shorten as the time of year changes? 

( )2 2 2 2 2
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So when we give the latitude and the number of days after June 21, this will give us the 
approximate value for the number of minutes later, or earlier, the sun will set the 
following evening. 
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If we differentiate the above equation with respect to T, the extreme values for 
dS
dT

 

occur when 2 / 365 / 2Tπ π=  or 3 / 2π .  When 2 / 365 / 2Tπ π=  (the first day of 
autumn) 

24
tan( )sin( ),

365
dS l
dT

α= −  

which for Charlotte gives 2.56 minutes per day earlier for the sunset.  On the first day of 
spring, when 2 / 365 3 / 2Tπ π= , the days are lengthening most rapidly with the same 
rate. 

Note how this maximal rate changes with latitude. Near the equator, tan( )l  is small. In 
fact, on the equator 0l = °  and tan( ) 0l = .  In San Juan, PR, the latitude is 18 27′°  and 
the maximal rate of change there is .52 minutes per day. This corresponds to the fact 
that seasons don't make much difference near the equator. As we go north the times 
increase: 

City Latitude Maximal  
Rate 

min/day 
Atlanta, GA 33 45 10′ ′′°  1.05 
Washington, DC  38 53 51′ ′′°  1.27 
Philadelphia, PA 39 56 58′ ′′°  1.32 
New York, NY  40 45 06′ ′′°  1.36 
Boston, MA 42 21 24′ ′′°  1.43 
Bangor, ME  44 48 13′ ′′°  1.56 
Vancouver, BC 49 18 56′ ′′°  1.83 
Nome, AK  64 30 00′ ′′°  3.30 

Near the poles, tan( )l  is very large, so the rate of change is tremendous. This large rate 
corresponds to the sudden switch from nearly 6 months of sunlight to nearly 6 months 
of darkness. At the poles, the rate of change is infinite. Of course, in reality the change 
isn't quite sudden because of the sun's diameter, the fact that the earth isn't a perfect 
sphere, refraction by the atmosphere, et. al.. 

Solar Energy 

The time of sunrise is the negative of the time of sunset, so we have 

sin( ) ,
S

S
E A dt

−
= ∫  

where sin( )A  comes from above and S is the time we found above, as well. 

Exercise 3: Find this integral. 

We can simplify this expression by using the formula 
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This gives us through some trigonometric identities to: 
2

2

2 1 ( ·sec( ))
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Since both k and 21 k−  appear, we can simplify further by writing sin( )k D= 3. 

It would take some time to simplify this.  We can see some simple substitutions to make 
and get: 

( )224
Energy cos( ) 1 (sec( )sin( )) sin( )sin( )arccos tan( )tan( )l l D l D l D

π
⎛ ⎞= − + −⎜ ⎟
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We have had to ignore the constant in the energy that could only be found empirically, 

so we can simplify the energy expression a bit more by ignoring the factor of 
24
π

.  

Incorporating the cos( )l  into the square root, we get (finally) 

( )2 2cos ( ) sin ( ) sin( )sin( )arccos tan( )tan( ) ,E l D l D l D= − + −  

where sin( ) sin( )cos(2 / 365)D Tα π= . 

Thus, the energy is a function of the latitude, l, and the time of year T.  You can plot the 
energy over the whole globe for a whole year using a 3-dimensional plot, possibly in 
WinPlot: 
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for 
2 2

xπ π
− ≤ ≤  and 1182 83y ≤− ≤ . 

Exercise 4: When does the equator receive the most solar energy? the least? 

At the equator, 0l = , what do we have? 

2 2 2 2
1 sin ( ) 1 sin ( )cos .

365
TE D πα ⎛ ⎞= − = − ⎜ ⎟

⎝ ⎠
 

Thus, the energy is largest when 2cos (2 / 365) 0Tπ = .  That is when 
1

365 4
T

=  or 
3
4

; 

                                                   
3 The number D is important in astronomy. It is called the declination. 
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that is on the first days of spring and fall.  On these days 1E = .  The energy will be the 
least on the first days of summer and winter when 2cos (2 / 365) 1π =  and we have 

21 sin ( ) cos( ) cos(23.5 ) 0.917E α α °= − = = = , or about 92% of the maximum value. 

Using this example, we can standardize units in which the solar energy can be 
measured. One unit of E is the total energy received on a square meter at the equator on 
the first day of spring.  All other energies may be expressed in terms of this unit. 

Exercise 5: Find the solar energy received at Charlotte on the first days of fall, 
spring, summer and winter. 

Exercise 6: Compare the solar energy received on June 21 at the Arctic Circle (
90l α= °− ) with that received at the equator and the amount received in Charlotte. 

Exercise 7: Express the total solar energy received over a whole year at latitude l by 
using summation notation.  Write down an integral which is approximately equal to 
this sum.  Ask your calculator to evaluate it. 

Exercise 8: Find the total solar energy received at a latitude in the polar region on a 
day on which the sun never sets. 

Exercise 9: How do you think the climate of the earth would be affected if the 
inclination α  were to become: (a) 10°?  (b) 40°? In each case discuss whether the 
North Pole receives more or less energy during the year than the equator. 

Exercise 10: Determine whether a square meter at the equator or at the North Pole 
receives more solar energy (a) during the month of February, (b) during the month of 
April, (c) during the entire year. 


