Let C denote the circle of radius r centered at the origin. Generate the sphere of radius r by rotating the circle about the x-axis. The function defining this circle is

$$
f(x)=\sqrt{r^{2}-x^{2}}
$$

so

$$
f^{\prime}(x)=-\frac{x}{\sqrt{r^{2}-x^{2}}}
$$

and

$$
1+\left[f^{\prime}(x)\right]^{2}=1+\left[-\frac{x}{\sqrt{r^{2}-x^{2}}}\right]^{2}=\frac{r^{2}}{r^{2}-x^{2}} .
$$

The surface area of this solid is given by:

$$
\begin{aligned}
S A & =2 \int_{0}^{r} 2 \pi f(x) \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x \\
& =4 \pi \int_{0}^{r} \sqrt{r^{2}-x^{2}} \sqrt{\frac{r^{2}}{r^{2}-x^{2}}} d x \\
& =4 \pi \int_{0}^{r} r d x=4 \pi r^{2}
\end{aligned}
$$

