Assignment 2: Solutions

1. Divide 3^{175} by 50!. What is the numerator of the resulting reduced fraction? How many factors of 3 does the factorization of this integer contain? Use Maple's numer command to obtain the numerator. Then click the right mouse button on the result and choose the option Integer Factors from the pop-up menu.

$$
>3 \wedge 175 / 50!;
$$

$99896890959484282689669211261958093930347737105225202930099789431 \backslash$
47202723/969186304754053024418147147150552064851968000000000000
$>$ numer (\%) ;
$99896890959484282689669211261958093930347737105225202930099789431 \backslash$
47202723
> ifactor(\%);

$$
(3)^{153}
$$

2. Determine the time it takes for Maple to compute 5000!. Which takes more time, computing 5000 ! or 5000^{5000} ?
```
    > restart:
    > showtime();
    > 5000!:
time = 0.06, bytes = 493442
    > 5000^5000:
time = 0.01, bytes = 41082
    > off;
```

3. i) Compute $\log (x)$ (the base 10 logarithm) of the following numbers:

$$
x=56,123,5120,98765
$$

Use Maple's evalf command to obtain numerical results.

```
> restart;
> L := [56, 123, 5120, 98765];
    L:= [56, 123, 5120, 98765]
> map(log10,L);
        [\frac{ln(56)}{\operatorname{ln}(10)},\frac{\operatorname{ln}(123)}{\operatorname{ln}(10)},\frac{\operatorname{ln}(5120)}{\operatorname{ln}(10)},\frac{\operatorname{ln}(98765)}{\operatorname{ln}(10)}]
> map(evalf,%);
    [1.748188027, 2.089905111, 3.709269961, 4.994603068]
```

ii) Now, compute the largest integer less than or equal to $\log (x)$ for these numbers. Use Maple's floor function. The mathematical notation for the floor function is $\lfloor x\rfloor$.

```
> map(floor,%);
```

$$
[1,2,3,4]
$$

(a) What is the relationship between $\lfloor\log (x)\rfloor$ and the number of digits of the number x ?
Note that this is called the mantissa of a number. This is one less than the number of digits in x.
iv) What is the number of digits of the huge integer $2^{1} 0000000$ (2 to the power ten million)? Use Maple's floor function and $\log 10$ commands and remember that $\log \left(2^{k}\right)=k \cdot \log (2)$.

```
> floor(10000000*log10(2));
```

3010299
Thus there are 3010300 digits in $2^{10000000}$.
4. The Maple procedure history makes the percentage symbols \%, \%\%, and \%\%\% less useful, if not superfluous. Use Maple's help facility to check on how precisely history functions. Then find out if $\%, \% \%$, and $\% \% \%$ are still working as before.

```
> ?history
```

The history function is used to maintain a history of all results computed within a Maple session, beyond what is available with the ditto operators $\%, \% \%$, and $\% \% \%$. After loading the history function, type history () ; to initiate the history mechanism. You will be prompted for input by the prompt 01 := and for successive statements by the prompts $02:=, 03:=$, and so on. Any Maple statement entered is evaluated and displayed normally. The result is assigned to the global variables $01,02, \ldots$ which may be referred to later, thus providing a history mechanism. The ditto operators will not work as before.
5. The first step in understanding the proper use of Maple packages such as student is the issuing of instructions like ?with and ?student. Tell me how a single package procedure cam be used without having to load the entire package.

```
> ?with
```

When with is called with the name of a package as its argument, it imposes the names exported by the package on the global namespace. The effect of this is to make these exported names available to the interactive user at the top level of Maple's interaction loop. For example, to access the procedure combinat [powerset] you must type

$$
\begin{array}{r}
>\text { combinat ['powerset' }](\{1,2\}) ; \\
\{\},\{1,2\},\{2\},\{1\}\}
\end{array}
$$

However, using with allows you to use the name powerset directly, without specifying the package to which that routine belongs.

```
    > with( combinat );
Warning, the protected name Chi has been redefined and unprotected
```

[Chi, bell, binomial, cartprod, character, choose, composition, conjpart, decodepart, encodepart, fibonacci, firstpart, graycode, inttovec, lastpart, multinomial, nextpart, numbcomb, numbcomp, numbpart, numbperm, partition, permute, powerset, prevpart, randcomb, randpart, randperm, stirling1, stirling2, subsets, vectoint]

```
> powerset( { 'a', 'b' } );
    {{},{b},{a},{a,b}}
```

6. Verify that

$$
\sum_{i=1}^{\infty}\left\lfloor\left(\frac{n}{2^{i}}\right)\right\rfloor
$$

gives the number of factors of 2 occurring in the factorization of n !. Remember that $\lfloor x\rfloor$ denotes the floor function applied to x.
Clearly, for i sufficiently large, $\left\lfloor\left(\frac{n}{2^{i}}\right)\right\rfloor$ will be zero.

$$
\text { > i:='i'; } \quad i:=i
$$

We define a function f on the set of natural numbers by

$$
\begin{array}{r}
>\mathrm{f}:=\mathrm{n} \rightarrow \operatorname{sum}\left(\mathrm{floor}\left(\mathrm{n} / 2^{\wedge} \mathrm{i}\right), \mathrm{i}=1 \ldots \mathrm{n}\right) ; \\
\qquad f:=n \rightarrow \sum_{i=1}^{n} \operatorname{floor}\left(\frac{n}{2^{i}}\right)
\end{array}
$$

Now, we want to verify for a number of integers that $n!/ 2^{f(n)}$ is odd. That means that $f(n)$ accounts for all of the factors of 2 in $n!$.

```
> for j from 2 to 25 do j!/(2^f(j)) od;
```

$$
\begin{gathered}
42567525 \\
638512875 \\
638512875 \\
10854718875 \\
97692469875 \\
1856156927625 \\
9280784638125 \\
194896477400625 \\
2143861251406875 \\
49308808782358125 \\
147926426347074375 \\
3698160658676859375
\end{gathered}
$$

Note that each of these is odd.
$>$ for j from 1 to 4 do floor ($25 / 2^{\wedge} j$) od; 12

6
3
1
$\left\lfloor n / 2^{j}\right\rfloor$ tells us the number of multiples of 2^{j} that there are that are less than n.

