Heck, Introduction to Maple Exercises Chapter 2

1. Consider the following Maple session

- > 3^2:
- > 4^2;

16

> % + %%;

_ .

does the last instruction make sense? If so, what is the result? if not, why?

> 3^2: > 4^2; > % + %%; 25

It makes sense because *Maple* does not need to have the result printed to screen in order to know the outcome of a command.

- 2. Explain the different results of the following *Maple* commands.
 - (a) x:y; (b) x/y; (c) x\y > x:y;

y

Maple simply returns y. Putting the colon behind x tells Maple to execute that statement but not print any output.

> x/y;

This gives the fraction x/y.

> x\y;

xy

 $\frac{x}{y}$

The backslash, \setminus , is a continuation character.

3. In this exercise you can practice your skills in using the help system of *Maple*.

- (a) Suppose that you can want to select from an equation, e.g., $1 = \cos(x)^2 + \sin(x)^2$, only the left or right side. How can you easily do this in *Maple*?
 - > eqn := 1=cos(x)^2+sin(x)^2;

$$eqn := 1 = \cos(x)^2 + \sin(x)^2$$

- > lhs(eqn);
- > rhs(eqn);

$$\cos(x)^2 + \sin(x)^2$$

1

- (b) Suppose that you want to compute the continued fraction approximation of the exponential function; can *Maple* do this for you? If yes, carry out the computation.
 - > ?confrac
 - > convert(exp(x),confrac,x);

$$1 + \frac{x}{1 + \frac{x}{-2 + \frac{x}{-3 + \frac{x}{2 + \frac{1}{5}x}}}}$$

- (c) Suppose that you want to factor the polynomial $x^8 + x^6 + 10x^3 + 8x^2 + 2x + 8$ modulo 13. Can *Maple* do this? If yes, carry out this factorization.
 - > Factor(x^8+x^6+10*x^3+8*x^2+2*x+8)mod 13;

 $(x^{2} + 8x + 9)(x + 7)(x^{2} + 11x + 12)(x^{3} + 6x + 4)$

- (d) Suppose that you want to determine all subsets of the set {1, 2, 3, 4, 5}. How can you do this in *Maple*?
 - > with(combinat,powerset);

[powerset]

> powerset({1,2,3,4,5});

 $\{\{\}, \{1, 2, 3, 4, 5\}, \{2, 3, 4, 5\}, \{3, 4, 5\}, \{1, 3, 4, 5\}, \{4, 5\}, \{1, 4, 5\}, \{2, 4, 5\}, \\ \{1, 2, 4, 5\}, \{5\}, \{1, 5\}, \{2, 5\}, \{1, 2, 5\}, \{3, 5\}, \{1, 3, 5\}, \{2, 3, 5\}, \{1, 2, 3, 5\}, \\ \{1\}, \{2\}, \{1, 2\}, \{3\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}, \{4\}, \{1, 4\}, \{2, 4\}, \{1, 2, 4\}, \\ \{3, 4\}, \{1, 3, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\}\}$

- 4. Load the numtheory package by entering with(numtheory); You may recognize some functions from number theory; some of the routines in this package are useful in answering the following questions.
 - > with(numtheory);

Warning, the protected name order has been redefined and unprotected

[GIgcd, bigomega, cfrac, cfracpol, cyclotomic, divisors, factorEQ, factorset, fermat, imagunit, index, integral_basis, invcfrac, invphi, issqrfree, jacobi, kronecker, λ , legendre, mcombine, mersenne, minkowski, mipolys, mlog, mobius, mroot, msqrt, nearestp, nthconver, nthdenom, nthnumer, nthpow, order, pdexpand, ϕ , π , pprimroot, primroot, quadres, rootsunity, safeprime, σ , sq2factor, sum2sqr, τ , thue]

- (a) Build a list of all integers that divide 9,876,543,210,123,456,789.
 - > divisors(9876543210123456789);

 $\{1, 3, 9, 13, 39, 117, 6353, 8969, 19059, 26907, 57177, 80721, 82589, 116597, 247767, 349791, 743301, 1049373, 222222223, 253244697695473251, 759734093086419753, 172736296240157, 3292181070041152263, 518208888720471, 1554626666161413, 39862222209267, 66666666669, 119586666627801, 1097393690013717421, 13287407403089, 9411851848793, 9876543210123456789, 444444443, 173333333277, 5777777759, 19259259253, 1333333329, 367062222102927, 1101186666308781, 84414899231824417, 28235555546379, 84706666639137, 122354074034309, 1481481481, 56980057, 170940171, 512820513, 740740741 \}$

- (b) Find the prime number that is closest to 9,876,543,210,123,456,789.
 - > nextprime(9876543210123456789);

9876543210123456803

> prevprime(9876543210123456789);

9876543210123456781

> %%-9876543210123456789;

14

> 9876543210123456789-%%;

8

The closest prime to 9,876,543,210,123,456,789 is 9,876,543,210,123,456,781.

- (c) What is the prime factorization of $5^{(5^{(5^5)})}$?
 - > ifactor(5^(5^(5^5)));

Error, numeric exception: overflow

(d) Expand the base e of the natural logarithm as a continued fraction up to 10 levels deep.> cfrac(exp(1),9);

- 5. In *Maple*, what is the difference between $\frac{1}{3} + \frac{1}{3} + \frac{1}{3}$ and $\frac{1.0}{3.0} + \frac{1.0}{3.0} + \frac{1.0}{3.0} + \frac{1.0}{3.0}$? > 1/3+1/3+1/3;

 - > 1.0/3.0+1.0/3.0+1.0/3.0;

.9999999999

1

How many digits of accuracy are necessary to make *Maple* think that they are the same, or will it ever consider them to be the same?

- > Digits:=1000:
- > 1.0/3.0+1.0/3.0+1.0/3.0;

- 6. Find the floating-point approximation of $(e)^{(\frac{\pi\sqrt{163}}{3})}$ using a precision of 10, 20, and 30 digits, respectively.
 - > restart;
 - > evalf(exp(Pi*sqrt(163)/3),10); #10 digit precision 640319.9998
 - > evalf(exp(Pi*sqrt(163)/3),20); # 20 digit precision 640320.0000000060543
 - > evalf(exp(Pi*sqrt(163)/3),30); # 30 digit precision 640320.00000000604863735049036
- 7. Calculate $\pi^{(\pi^{\pi})}$ to nine decimal places.
- First, we expect that we should simply execute
 - evalf(Pi^(Pi^Pi),9);
 - > evalf(Pi^(Pi^Pi),9);

$.134016366\,10^{19}$

but this only gives 9 digits, \mathbf{NOT} 9 decimal places. We need a few more digits to get 9 decimal places.

> evalf(Pi^(Pi^Pi),30);

$.134016418300635743529744912966\,10^{19}$

- 8. Compute this exercise in a floating-point precision of eight decimal places. What is the result of 310.0 320.0 330 $\sqrt{310.0320.0} \sqrt{320.0330.0} \sqrt{330.0310.0}$?
 - > Digits:=8:
 - > 310.0*320.0*330 -
 - > sqrt(310.0*320.0)*sqrt(320.0*330.0)*sqrt(330.0*310.0);

-1.

> restart;

- 9. Do you remember which of the numbers $\frac{19}{6}$, $\frac{22}{7}$, and $\frac{25}{8}$ is a fairly good rational approximation of π ? Use **Maple** to find the best of these three numbers. Find the best rational approximation $\frac{a}{b}$ of π , where a and b are natural numbers less than 1000 (Hint: look at the continued fraction expansion of π).
 - > with(numtheory):

Warning, the protected name order has been redefined and unprotected

>	evalf(19/6);evalf(22/7);evalf(25/8);	
		3.166666667
		3.142857143
		3.125000000
>	cfrac(Pi,3);	
	:	$3 + \frac{1}{1}$
		$7 + \frac{1}{1}$
		$15 + \frac{1}{1 + \dots}$
>	3+1/(7+1/(15+1/(1)));	
		355
	(0)	$\overline{113}$
>	evalf(%);	
		3.141592920

- 10. Check that $\sqrt{2\sqrt{19549}} + 286$ is equal to $\sqrt{113} + \sqrt{173}$.
 - > sqrt(2*sqrt(19549)+286)-(sqrt(113)+sqrt(173));

0

> verify(sqrt(2*sqrt(19549)+286),sqrt(113)+sqrt(173));

true

> evalb(sqrt(2*sqrt(19549)+286)=sqrt(113)+sqrt(173));

true

- > restart;
- 11. In *Maple*, transform $\frac{1}{\sqrt{3}+1}$ into an expression of the form $a + b\sqrt{3}$, with rational numbers a and b. > rationalize(1/(sqrt(3)+1));

$$-\frac{1}{2}+\frac{1}{2}\sqrt{3}$$

- 12. Let θ be a root of the polynomial $\theta^3 \theta 1$ and consider the extension of the field of rational numbers with θ . So, we consider expressions of the form $a + b\theta + c\theta^2$, where a, b, and c are rational numbers, and in calculations with these expressions we apply the identity $\theta^3 = \theta + 1$. Transform with **Maple** $\frac{1}{\theta^2+1}$ into an expression of the form $a + b\theta + c\theta^2$, where a, b, and c are rational numbers.
 - > alias(theta=RootOf(x^3-x-1)):
 - > simplify(1/(theta²⁺¹));

$$\frac{4}{5} - \frac{2}{5}\theta^2 + \frac{1}{5}\theta$$

- 13. Show that *Maple* knows that the exponential power of a complex number can be written in terms of cosine and sine of the real and imaginary parts of that number. Also calculate $e^{(\frac{\pi I}{12})}$ in that form.
 - > convert(exp(I*z),trig);

$$\cos(z) + I\sin(z)$$

- > assume(x,real):assume(y,real):
- > evalc(exp(x+I*y));

$$e^{x} \cos(y) + I e^{x} \sin(y)$$

> evalc(exp(Pi*I/12));

$$\cos(\frac{1}{12}\pi) + I\sin(\frac{1}{12}\pi)$$

> convert(%,radical);

$$\frac{1}{4}\sqrt{2}(1+\sqrt{3}) + \frac{1}{4}I\sqrt{2}(\sqrt{3}-1)$$

- 14. Show with *Maple* that $tanh(\frac{z}{2}) = \frac{\sinh(x) + I \sin(y)}{\cosh(x) + \cos(y)}$, for any complex number z = x + yI with real x and y.
 - _
 - > restart:
 - > z:=x+I*y;

$$z := x + I y$$

> evalc(tanh(z/2));

$$\frac{\sinh(\frac{1}{2}x)\cosh(\frac{1}{2}x)}{\sinh(\frac{1}{2}x)^2 + \cos(\frac{1}{2}y)^2} + \frac{I\sin(\frac{1}{2}y)\cos(\frac{1}{2}y)}{\sinh(\frac{1}{2}x)^2 + \cos(\frac{1}{2}y)^2}$$

> combine(%);

$$\frac{\sinh(x) + I\sin(y)}{\cosh(x) + \cos(y)}$$