
Chapter 4

The Chinese Remainder Theorem

The Monkey-Sailor-Coconut Problem Three sailors pick up a number of coconuts, place
them in a pile and retire for the night. During the night, the first sailor—wanting to make
sure that he gets his fair share—gets up and takes 1/3 of the pile. The number of coconuts
in the pile is not divisible by 3, there is 1 left over and he gives that coconut to the monkey.
A little later, the second sailor gets up to do the same thing. He too finds that in order to
take 1/3 of the pile, he needs to give one coconut to the monkey. Even later still, the third
sailor gets up and does the same thing, giving 1 coconut to the monkey. In the morning
the sailors gather to divide the remaining pile of coconuts evenly among the three of them.
None would dare say anything about the size of the pile for fear of incriminating himself,
and the monkey isn’t talking, since he got 3 coconuts last night. When they divide the pile
into 3 equal piles they find that they need to give the monkey 1 more coconut. What is the
smallest number of coconuts with which they could have started and how many did each
sailor get? We know the monkey got 4. [Note: n = −2 is, in some respects, the optimal
solution but it has it physical drawbacks — especially if there is any interaction between the
-2 anti-coconuts and coconuts. The implications for the future of the Universe are colossal.

This is actually a problem that has been passed down through many different cultures. It
appears in Chinese manuscripts and Indian manuscripts in forms that are very much like the
above problem. It appears in Chinese literature as early as the first century A.D. Sun-Tsu
asked: Find a number which leaves the remainders 2,3,2 when divided by 3,5,7 respectively.

In order to solve this problem we need to recall quite a bit of mathematics.
A binary relation ∼ on a set R is an equivalence relation if it satisfies the following

conditions.

a) Reflexive: a ∼ a for all a ∈ R.

b) Symmetric: If a, b ∈ R and a ∼ b, then b ∼ a.

c) Transitive: If a, b, c ∈ R and if a ∼ b and b ∼ c, then a ∼ c.

When we have an equivalence relation, we can divide the set R into equivalence classes
[a] = {b ∈ R | b ∼ a}. We are interested in the integers, Z and the equivalence relation
a ∼n b if n | (a − b), or if a and b have the same remainder when divided by n. The set of
congruence classes modulo n is denoted by Zn. Let’s recall a few definitions from algebra.
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4.1 Groups, rings and fields

Recall the following definitions.

Definition 1 A non-empty set G together with an operation ◦, (G, ◦), is a group if the
following holds:

1. ∀a, b, c ∈ G : a ◦ (b ◦ c) = (a ◦ b) ◦ c

2. ∃e ∈ G such that ∀a ∈ G, a ◦ e = e ◦ a = a

3. ∀a ∈ G∃A ∈ G such that a ◦ A = A ◦ a = e.

A group (G, ◦) is called commutative or Abelian if a ◦ b = b ◦ a for all a, b ∈ G.

Example 4.1.1 (Z, +) is an Abelian group.

Definition 2 A set R together with operations + and · is a ring (R, +, ·) if the following
holds:

1. (R, +) is a commutative group.

2. ∀a, b, c ∈ R a · (b · c) = (a · b) · c.
3. ∃ I ∈ R such that ∀a ∈ R, a · I = I · a = a.

4. ∀a, b, c ∈ R : a · (a + b) = a · b + a · c and (a + b) · c = a · c + b · c.
A ring (R, +, ·) is a commutative if ∀a, b ∈ G, a · b = b · a.

Example 4.1.2 (Z, +, ·) is a ring.

Definition 3 The characteristic of a ring R is 0 if nI 6= e for any positive integer n.
Otherwise the characteristic is the smallest integer m such that mI = e. Here e and I are
the neutral elements of the operations + and ·, respectively.

Example 4.1.3 Rational numbers form the ring (Q, +, ·). Let M2,2(Q) be the set of 2× 2
matrices with rational coefficients. Let + denote the addition of matrices and · the multipli-
cation. Then (M2,2(Q), +, ·) is a ring that is not commutative. This ring has characteristic
0.

Definition 4 Let R and S be rings. A map ϕ : R → S is a ring homomorphism if ϕ(eR) =
eS, ϕ(IR) = IS, ϕ(a + b) = ϕ(a) + ϕ(b) and ϕ(a · b) = ϕ(a) · ϕ(b) for all a, b ∈ R.

Example 4.1.4 Consider integers modulo 4, Z4 with the usual addition and multiplication.
It is clear that (Z4, +, ·) is a commutative ring. Since 1 + 1 + 1 + 1 = 0 in Z4, Z4 has
characteristic at most 4. The characteristic is actually exactly 4, as can be easily seen. The
projection Z→ Z4, which takes a number n to its reminder under the division by 4, is a ring
homomorphism.
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Definition 5 A field F = (F, +, ·) is a ring for which 0 6= 1 and whose every non–zero
element has a multiplicative inverse.

Observe that (F, +, ·) is a field if and only if both (F, +) and (F, ·) are groups.
Which of the following are fields:

• Z3

• Z4

• Z

• Q

• R

Theorem 1 (Zn, +, ·) is a ring. (Zn, +, ·) is a field if and only if n is prime.

Note that this distinction is important. When can we cancel, i.e., when does ca ∼= cb
mod n imply that a ∼= b mod n?

Theorem 2 If ca ∼= cb mod n, then a ∼= b mod (n/d), where d = gcd(c, n).

Corollary 1 If ca ∼= cb mod n and gcd(c, n) = 1, then a ∼= b mod n.

Corollary 2 If ca ∼= cb mod p, p a prime, and p does not divide c, then a ∼= b mod p.

4.2 Linear Congruences

An equation of the form ax ∼= b( mod n) is called a linear congruence. We will want to
solve this equation for x.

Theorem 3 The linear congruence ax ∼= b( mod n) has a solution if and only if d | b,
where d = gcd(a, n). If d does not divide b, then there are d mutually incongruent solutions
modulo n.

If d does not divide b and if x0 is a solution, then the d incongruent solutions are given
by

x0, x0 + n/d, x0 + 2(n/d), . . . , x0 + (d− 1)(n/d).

Corollary 3 If gcd(a, n) = 1, then the linear congruence ax ∼= b( mod n) has a unique
solution modulo n.
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4.3 Chinese remainder theorem

Let m and n be relatively prime positive integers. Consider the system of congruences

x ≡ a ( mod m) (4.1)

x ≡ b ( mod n) (4.2)

Equivalently one may write

irem(x,m) = a (4.3)

irem(x, n) = b (4.4)

To solve these equations, observe first that both Zm and Zn are rings and also the product
Zm × Zn is a ring. It is a finite ring having mn elements.

Consider the mapping

π : Z→ Zm × Zn, s 7→ (irem(s,m), irem(s, n)).

This mapping is a homomorphism of rings. Clearly π(s) = (0, 0) if and only if s is divisible
by mn.

It follows that π induces a one-to-one ring homomorphism

Zmn → Zm × Zn, s 7→ (irem(s,m), irem(s, n)).

Since Zmn and Zm × Zn both have mn elements, the above ring homomorphism must
be onto. This means the the above equations have a solution for any a and b. This is the
Chinese remainder theorem.

Theorem 4 Let m and n be relatively prime positive integers. The system

x ≡ a ( mod m) (4.5)

x ≡ b ( mod n) (4.6)

has integer solutions for any integers a and b. Moreover the solution is unique up to a
multiple of mn (i.e. as an element of Zmn the solution is unique).

In fact, the general Chinese Remainder Theorem holds for more than two equations:

Theorem 5 Let n1, n2, . . . , nr be positive integers so that gcd(ni, nj) = 1 for i 6= j. Then
the system of linear congruences

x ≡ a1( mod n1) (4.7)

x ≡ a2( mod n2) (4.8)
... (4.9)

x ≡ ar( mod nr) (4.10)

has a simultaneous solution, which is unique modulo n1n2 . . . nr.
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The solution is given by taking Nk = (n1n2 . . . nr)/nk for k = 1, 2, . . . r. Since gcd(Nk, nk) =
1 there is a solution, xk, to Nkx ≡ 1 mod nk. Then the solution is given by

x =
r∑

i=k

akNkxk.

The problem posed by Sun-Tsu is

x ≡ 2( mod 3) (4.11)

x ≡ 3( mod 5) (4.12)

x ≡ 2( mod 7) (4.13)

Then N1 = 35, N2 = 21, and N3 = 15. We have to solve the congruences 35x ≡ 1 mod 3,
21x ≡ 1 mod 5, and 15x ≡ 1 mod 7. These solutions are x1 = 2, x2 = 1, and x3 = 1.
Thus,

x ≡ 2 · 35 · 2 + 3 · 21 · 1 + 2 · 15 · 1( mod 105)

or x ≡ 233 ≡ 23 mod 105.


