
Chapter 7

A Least Squares Filter

This Maple session is about matrices and how Maple can be made to employ matrices
for attacking practical problems. There are a large number of matrix functions known to
Maple.

Here we see how Maple might be useful in an attempt to solve a difficult mathematical
problem. We will not delve much deeper than we would without the use of a computer
algebra system. However our use of Maple will speed up the learning process significantly.
It is possible that you will not fully comprehend the meaning of the Maple procedures that
we will use here. I hope that after you have worked through some of the work, you will
understand this session better.

7.1 Matrices and Vectors

We will load all available matrix functions at once with the Maple command with(linalg).

> with(linalg):

Matrices can be introduced using the matrix function which is part of the linalg package.

> A := matrix(3,4,(i,j)-> 1 + 2*i - 3*j);

> A, evalm(A);

Note that in order to evaluate a matrix, the we must use the evalm procedure, otherwise
the matrix is merely evaluated to its name. The call to A is not a call that fully evaluates
A. It is easier for Maple to deal with A, not with the matrix representation.

In addition to the matrix procedure, the linalg package also contains a vector command.
The first argument of the vector procedure determines the number of vector components.
Apparently, Maple does not distinguish row vectors from column vectors, because, as you
will see below, Maple displays a vector as a list of its components, arranged in a row and
separated by commas. The output of Maple ’s vector procedure should always be seen as
a one-dimensional list. On the other hand, a column vector really is a 3 x 1 matrix; here
two dimensions are involved. The next lines verify all this.

> b := vector(3,[1,2,3]); c := matrix(1,3,[1,2,3]);

> evalm(b&*A);

48

7.1. MATRICES AND VECTORS 49

> evalm(transpose(A)&*b);

> evalm(c&*A);

> evalm(transpose(A)&*c);

Note the difference between the list output and the row vector output; the former uses
commas to separate elements, the latter does not. First, in b&*A, Maple treats the vector b
as a 1 x 3 matrix, while in transpose(A)&*b, the vector b is suddenly seen as a 3×1 matrix!
Of course, this is all for the benefit of matching dimensions in vector-matrix multiplication.

Each specific matrix element can be extracted by using a double index system, row
number first. The instruction

> A[2,3];

shows the matrix element on the intersection of the second row and the third column.
An individual matrix element can be changed by assigning a new value to it.

> A[2,3] := 9;

Now verify that this change really has taken effect.

> A = evalm(A);

Apparently, calling just A (note that no back quotes are used around A in the left-
hand side) returns A unevaluated without showing its elements. The letter m in evalm

comes from matrix of course. The evalm command reveals the values of all elements of
many types of matrix expressions, such as sums and products of matrices.

> evalm(A + A);

This different property of matrix evaluation has a strange effect on assignments like

> B := A;

Each element of B gets the same value as the corresponding element of A, which is
what we expected. The surprising information is that new changes on the elements of A
automatically effect B in the same way!

> evalm(A), evalm(B); A[2,3] := 6; evalm(A), evalm(B);

To avoid this happening we have Maple ’s copy command.

> C := copy(A);

> evalm(A), evalm(C); A[3,4] := 11; evalm(A), evalm(C);

Observe that the change in A has no effect on the matrix C.

The elements of a matrix often show a certain regularity. In many cases such a regular
pattern can be considered the result of a function prescription applied to each pair of indices
(i, j). Maple enables the user to insert a prescription as part of the matrix definition. For
example:

> f := (i,j) -> 1/(i+j-1);

> H := n -> matrix(n,n,f);

This defines the so-called Hilbert matrices H(n).

> H(4);

50 CHAPTER 7. A LEAST SQUARES FILTER

It is not absolutely necessary to introduce a matrix in the completely explicit way of
giving all its elements as we did before. A symbolic matrix is obtained when elements are
not explicitly given. Of course, the size of the matrix must then be specified.

> A := matrix(2,3); evalm(A);

It is also possible to instruct Maple to provide a symmetric (symbolic) matrix. However,
this can not be done by means of the matrix command, the array procedure should be used
instead. After introducing a symmetric matrix A in this way, it is easy to check that A is
indeed symmetric.

> A := array(1..3,1..3,‘symmetric‘);

> i, j, A[i,j] - A[j,i];

First we have made sure that both i and j are free variables.
Other special matrices are zero matrices and identity matrices. A zero matrix is a matrix

of only zero elements. It can be defined by inserting a single 0 at the position where we
normally type the matrix elements, or where the element prescription goes.

> ZeroMatrix := (m,n) -> matrix(m,n,0);

> ZeroMatrix(2,3);

Identity matrices are not automatically provided by Maple. You will have to create
them yourself.

> Id1 := n -> array(1..n,1..n,‘identity‘);

> Id2 := n -> matrix(n,n,(i,j) -> if i=j then 1 else 0 fi);

> Id1(3), Id2(4);

A disadvantage of both methods is that the size has to be specified. It would be nice to
have a single symbol for all identity matrices. The symbol I (capital i) is generally reserved
for this purpose. But Maple has another use for it, namely the complex number i =

√−1.
Fortunately, the designers of Maple invented another symbol, or rather procedure, that
produces a universal identity matrix, namely &*(). Assisted by Maple ’s alias function,
we can now create a more natural symbol, such as Id, which is short for identity.

> alias(Id = &*());

Recall that Maple uses the &* symbol for matrix multiplication, in contrast to the single
* which stands for scalar multiplication. One reason for this difference is that the usual mul-
tiplication symbol * is only used for commutative operations, and, as you know, matrix mul-
tiplication is not commutative. The distinction between commutative and non-commutative
is important in connection with the automatic simplification of complicated expressions.

> A := matrix(7,5); evalm(A&*Id - Id&*A);

Note that in the second expression above the symbol Id is used for two different identity
matrices, one of size 5× 5, the other of size 7× 7.

7.1.1 Computations with Matrices

In order to test hypotheses like: matrix multiplication is non-commutative, it is often conve-
nient to use random matrices. The Maple procedure randmatrix produces such matrices.

7.1. MATRICES AND VECTORS 51

A number of options, such as sparse, symmetric, and anti-symmetric are available. Recall
that an anti-symmetric matrix A satisfies the condition At = −A, and that most elements
(let us say at least 80%) of a sparse matrix are zero.

> A := randmatrix(5,5); B := randmatrix(5,5);

> equal(A&*B - B&*A,matrix(5,5,0));

We may conclude that, generally speaking, the matrix products AB and BA do not
coincide.

With equal(A,B) Maple checks that the two matrices A and B are equal.

> A := matrix(2,3,[1,2,3,4,5,6]);

> B := matrix(2,2,[1,-1,3,-1]);

> C := (2*(B^3 + inverse(B))&*A)/5: evalm(C);

On clicking the right mouse button on one of the matrices, a menu of common matrix
functions pops up. Note that for the square matrix B there are more procedures available
than for the other two matrices.

7.1.2 Solving a System of Linear Equations

Next let’s consider solving a system of linear equations by matrix computation. Choose a
matrix of coefficients A and a constant vector b.

> A := matrix(3,3,[1,2,3,2,5,3,1,0,8]);

> b := vector([5,3,17]);

You can’t be surprised that Maple will solve the system Ax = b. Use the command
linsolve to do it.

> x := linsolve(A,b);

Now let’s take a look at the reduction process on which Gaussian elimination is based.
Recall that we first create the augmented matrix:

> A_b := augment(A,b);

Then we apply row reduction to this augmented matrix. First exchange the first and
third rows, then subtract the first row twice from the second row, and after that subtract
the first row from the third row.

> swaprow(%,1,3);

> addrow(%,1,2,-2);

> addrow(%,1,3,-1);

The Maple commands swaprow and addrow do what you expect them to do. Now,
subtract 2

5
times the second row from the third row, and after that multiply the last row by

5.

> addrow(%,2,3,-2/5);

> R := mulrow(%,3,5);

52 CHAPTER 7. A LEAST SQUARES FILTER

Now we have obtained the row reduced form of the augmented matrix used in the Gaus-
sian elimination process to find the solution to a system of equations. Applying backsub

(back substitution) to the row reduced matrix R gives the solution.

> backsub(R); equal(backsub(R),x);

Finally, the reduced row-echelon form can be obtained directly from the augmented
matrix by means of the Maple procedure rref, which is short for reduced row-echelon
form.

> evalm(rref(A_b));

7.2 Removing Noise from a Data Set

In the remainder of this Maple session, we are going to consider how the least squares
method may be applied to the process of removing, or filtering, so-called noise from a given
data set.

Consider the following problem. We are given a large set of N points Pi = (ti, bi) (i =
1,..., N) in the plane, which can be viewed as the set of (inexact) observations of an event
(or function) f , so that bi is approximately equal to f(ti) for i =1,..., N . Our objective is
to find a polynomial of fixed degree n that best fits the observed values, in the sense that it
does better than all other polynomials of the same degree. Such a polynomial will also give
us good approximations (we hope) of other, unobserved values of the function f . Moreover
- and this is crucial - we hope to be able to smooth down the irregularities caused by non
accurate observations. Our choice of
n

depends on the overall pattern in which the points Pi are arranged, and we shall use the
least squares approximation to obtain a best fit. Therefore, the problem we set out to solve
is to compute the least squares solution to the linear system

Ax = b

where A = (aij) is the N × (n + 1) matrix with elements aij = ti
(j−1) and b is a vector with

components bi.
Let as first consider a simple example. Suppose we have the use of 100 observations of

the sine function on the interval [0,2 π]. These observations contain small errors, usually
referred to as noise (think of the graph of a noisy electronic signal). The noisy character of
the sine data can be simulated by adding to each sine value a random value between -0.2
and 0.2. We use Maple ’s random generator rand to generate the additional noise.

> t := vector(100,i -> 2*Pi*i/100):

> b := vector(100,i -> sin(t[i]) + 0.2*(rand(101)()-50)/100):

Now we shall try to retrieve the true sine curve from the noisy data by computing the
best cubic polynomial fit in the least squares sense.

The noisy sine curve is shown in the next figure.

> plot([seq([t[i],b[i]],i=1..100)]);

7.2. REMOVING NOISE FROM A DATA SET 53

The Maple command leastsqrs solves the least squares problem. Of course, we could
instead use linsolve to solve the system of normal equations. Like so:

> A := matrix(100,4,(i,j) -> t[i]^(j-1)):

> a := leastsqrs(A,b);

Maple ’s leastsqrs gives a vector output of polynomial coefficients.

> i := ’i’: p := t -> sum(a[i+1]*t^i,i=0..3);

> plot({sin(x),p(x)},x=0..2*Pi);
In this figure the sine function is plotted, superimposed by the graph of the least squares

solution. Despite the rather sizeable noise in the sine values, the retrieved curve is not bad
at all, at least it is a great improvement on its noisy counterpart. We realize of course that
the example may seem rather unfair, knowing that the sine function behaves very much like
a cubic polynomial on any interval of length 2 π anyway.

Now assume more realistically that our data do not permit good polynomial approxima-
tions of low degree. We then could try to filter out the noise by replacing each point Pi = (
ti, bi) of the data set by another point (ti, pi(ti)) obtained by applying the cubic polynomial
least squares technique to the original point and its closest neighbors, say five to the left,
and five to the right. Here pi is the least squares cubic polynomial associated with the point
Pi ; observe that pi changes from point to point. The first five and the last five data points
of our set naturally need special treatment, as there are fewer neighboring points available.

Let us first generate a 200-point data set on the interval [0,1]. We use a strongly fluctu-
ating data function to assist us.

> datafunction := x -> exp(-(10*x-2)^2) + exp(-2*(10*x-4)^2)

> + exp(-4*(10*x-6)^2) + exp(-8*(10*x-8)^2);

> p1 := plot(datafunction(x),x=0..1): p1;

Next we generate the data set of function values with noise.

> N := 200: argset := [seq(i/N,i=1..N)]: _seed := 123456:

> funcset := [seq(evalf(datafunction(i/N) +

> 0.2*(rand(N+1)() - N/2)/N),i=1..N)]:

> dataset := zip((a,b) -> [a,b],argset,funcset):

> plot(dataset);

Next to the graph of the data function, the noisy data is unmistakable.
We shall use the least squares technique described in detail above to smooth down the

rough edges from dataset. The Maple code is given below.

> nfuncset := []: k := ’k’:

> for k to 5 do nfuncset := [op(nfuncset),funcset[k]] od:

> for k from 6 to N-6 do

> A := matrix(11,4,(i,j) -> argset[k+i-6]^(j-1)):

> b := vector(11, i -> funcset[k+i-6]):

> a := leastsqrs(A,b):

> m := ’m’: p := t -> sum(a[m+1]*t^m,m=0..3):

54 CHAPTER 7. A LEAST SQUARES FILTER

> nfuncset := [op(nfuncset),evalf(p(argset[k]))] od:

> for k from N-5 to N do

> nfuncset := [op(nfuncset),funcset[k]] od:

> ndataset := [zip((a,b) -> [a,b],argset,nfuncset)]:

The next figure shows the graph of the original data function superimposed by that of
the new data set. Except for a few points at the beginning and at the end of the interval,
and those at the function’s extremes, the result is quite satisfactory.

> p2 := plot(ndataset,color=black):

> plots[display]({p1,p2});
The subpackage fit of Maple’s stats package also contains a least squares procedure,

called leastsquare. This procedure is very suitable for curve-fitting in the least squares
sense. We might just as well have used this procedure for the application given above. How-
ever, wishing to avoid the black-box character of the latter, we chose for a more transparent
approach.

