
Chapter 9

The Problem of Finite Integration

When is the antiderivative of an elementary function an elementary function? When can the
antiderivative of an elementary function be written in finite terms? Why cant I write down∫

ex2
dx?

The question arises from elementary differential equations: Solve
dy

dx
= f(x). This really

is a number of questions:

1. Does the equation have a solution?

2. Is the solution, if it exists, unique?

3. What relations hold between different solutions?

4. What is the functional form of a solution?

We can answer these for the most part:

1. A solution is

y =

∫ x

a

f(u) du.

if the definite integral exists.

2. y + C is also a solution, where C is an arbitrary constant.

3. All solutions are of the form y + C.

Our interest really lies in #4.

9.1 Elementary Functions

An elementary function is a function of one of the following types:

1. rational functions;
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70 CHAPTER 9. THE PROBLEM OF FINITE INTEGRATION

2. algebraic functions, explicit or implicit;

3. the exponential function ex;

4. the logarithmic function log(x);

5. finite combinations of the previous classes.

Theorem 6 (Laplaces Theorem (1812)) The integral of a rational function is always an
elementary function. In fact, it is either rational or the sum of a rational function and a
finite number of constant multiples of logarithms of rational functions.

How do we handle the following?

∫
(x2 + 1)2 + x

x(x2 + 1)
dx

By Partial Fractions, of course. This is basic algebra. It is also wise to use Maple to do this
basic algebra.

∫
(x2 + 1)2 + x

x(x2 + 1)
dx =

∫
x dx +

∫
1

x
dx +

∫
1

x2 + 1
dx

=
1

2
x2 + log |x|+

∫ (
i

2(x + i)
− i

2(x− i)

)
dx

=
1

2
x2 + log |x|+ i

2
log

∣∣∣∣
x + i

x− i

∣∣∣∣ + C

This is probably not what you expected, but it is in the format promised by Laplaces Theorem
rationals and logarithms. This is not what we would expect, nor get, from Maple, or is it?

9.1.1 Standard Trigonometric Functions

How do we handle the standard trig functions, such as sine and cosine? They do not appear
to be in one of the above forms. Each trigonometric function is definable in terms of complex
exponentials and so fall under this theorem:

cos(z) =
1

2

(
eiz + e−iz

)

sin(z) =
1

2

(
eiz − e−iz

)
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9.2 Hermite’s Algorithm

Lets look at a different example:

∫
4x9 + 21x6 + 2x3 − 3x2 − 3

(x7 − x + 1)2
dx

This is not something we would like to attack using partial fractions. How do we attack
problems of this type?

Hermite showed that the rational part of the integral can be determined without a knowl-
edge of the roots of the denominator, and using only elementary algebra!

If P1 and P2 are two polynomials in x which have no common factor, and P3 any third
polynomial, then we can determine two polynomials A1 and A2, such that

A1P1 + A2P2 = P3.

This is because the gcd of P1 and P2 is 1, so there is always a way to write the gcd as a linear
combination of the two polynomials. Since that is true, we can then write any polynomial
as an appropriate combination of P1 and P2.

To integrate ∫
P (x)

Q(x)
dx

suppose that Q(x) = Q1(x)Q2(x)2Q3(x)3 . . . Qn(x)n where each polynomial has only simple
roots and no two of which have a common factor. You can then find B and A1 so that

BQ1 + A1Q
2
2Q

3
3 . . . Qn

n = P,

and therefore so that

R(x) =
P

Q
=

A1

Q1

+
B

Q2
2Q

3
3 . . . Qn

n

.

By repeating this process we arrive at

R(x) =
A1

Q1

+
A2

Q2
2

+
A3

Q3
3

+ · · ·+ An

Qn
n

and the problem of integrating the rational function is reduced to integrating A
Qn where Q is

a polynomial all of whose roots are distinct. Such a polynomial Q is called squarefree.

Since Q is squarefree, Q and Q′ have no factors in common. Therefore, there are poly-
nomials C and D so that

CQ + DQ′ = A
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Hence,

∫
AQn dx =

∫
CQ + DQ′

Qn
dx

=

∫
C

Qn−1
dx− 1

n− 1

∫
D

d

dx

(
1

Qn−1

)
dx

= − D

(n− 1)Qn−1
+

1

n− 1

∫
D′

Qn−1
dx +

∫
C

Qn−1
dx

= − D

(n− 1)Qn−1
+

∫
E

Qn−1
dx

where

E = C +
D′

n− 1
.

So we have reduced the degree of the denominator by one, and have arrived at a similar
integral. We can proceed in this way and reduce the degree of 1/Q by one at each step.
Finally we will arrive at an equation:

∫
A

Qn
dx = Rn(x) +

∫
S

Q
dx

where Rn is a rational function and S is a polynomial.
The integral on the right hand side has no rational part, since all of the roots of Q are

simple (or Q is squarefree). Thus the rational part of
∫

R(x) dx is

R2(x) + R3(x) + · · ·+ Rt(x).

Example 9.2.1 So to integrate

∫
4x9 + 21x6 + 2x3 − 3x2 − 3

(x7 − x + 1)2
dx

take P1 = x7 − x + 1, P2 = P ′
1 = 7x6 − 1, P3 = 4x9 + 21x6 + 2x3 − 3x2 We have to have

C(x7−x+1)+D(7x6− 1) = 4x9 +21x6 +2x3− 3x2− 3 So we can take C to have degree no
more than 5 and D to have degree no more than 6. We then get a system of 13 equations in
13 unknowns, which we can solve. In this case we find that:

C = a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x + a0

D = b6x
6 + b5x

5 + b4x
4 + b3x

3 + b2x
2 + b1x + b0

C × (x7 − x + 1) + D × (7x6 − 1) = 4x9 + 21x6 + 2x3 − 3x2 − 3

(a5 + 7b6) x12 + (a4 + 7b5) x11 + (a3 + 7b4) x10 + (a2 + 7b3) x9 + (a1 + 7b2) x8 + (a0 + 7b1) x7+

(7b0 − b6 − a5) x6 + (a5 − b5 − a4) x5 + (a4 − b4 − a3) x4 + (a3 − b3 − a2) x3 + (a2 − b2 − a1) x2+

(a1 − b1 − a0) x + (a0 − b0) = 4x9 + 21x6 + 2x3 − 3x2 − 3
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Giving us the system of equations

a5 + 7b6 = 0

a4 + 7b5 = 0

a3 + 7b4 = 0

a2 + 7b3 = 4

a1 + 7b2 = 0

a0 + 7b1 = 0

7b0 − b6 − a5 = 21

a5 − b5 − a4 = 0

a4 − b4 − a3 = 0

a3 − b3 − a2 = 2

a2 − b2 − a1 = −3

a1 − b1 − a0 = 0

a0 − b0 = −3

We have to solve this system of 13 equations in 13 unknowns. This gives:

a5 = a4 = a2 = a1 = a0 = 0

a3 = −3

b6 = b5 = b4 = b2 = b1 = 0

b3 = 1, b0 = 3

Thus,
C = −3x2, D = x3 + 3

According to the Hermite Algorithm then we have

∫
4x9 + 21x6 + 2x3 − 3x2 − 3

(x7 − x + 1)2
dx = − x3 + 3

x7 − x + 1

S = −3x2 + d
dx

(
x3 + 3

)
= 0

Thus, this is the complete integral. Note that this is mostly algebra! Comparing this on
Maple, Mathematica, Derive, and the TI-89, we get:

Maple Mathematica Derive TI-89

−3− x3

x7 − x + 1
− x3 + 3

x7 − x + 1
no response no response
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Example 9.2.2 ∫
R(x) dx =

∫
x7 − 24x4 − 4x2 + 8x− 8

x8 + 6x6 + 12x4 + 8x2
dx

We need to factor the denominator:

Q = x8 + 6x6 + 12x4 + 8x2 = x2(x2 + 2)3 = Q2
2Q

3
3

R now decomposes to:

R =
x− 1

x2
+

x4 − 6x3 − 18x2 − 12x + 8

(x2 + 2)3
=

A2

Q2
2

+
A3

Q3
3∫

R(x) dx =

∫
A2

Q2
2

dx +

∫
A3

Q3
3

dx =

∫
x− 1

x2
dx +

∫
x4 − 6cx3 − 18x2 − 12x + 8

(x2 + 2)3
dx

Applying Hermite’s Algorithm to the first integral we must find C and D so that:

Cx + D = x− 1

C = 1, D = −1∫
x− 1

x2
dx =

1

x
+

∫
dx

x

For the second integral we need to find C and D so that

C
(
x2 + 2

)
+ D (2x) = x4 − 6x3 − 18x2 − 12x + 8

Setting C = a2x
2 + a1x + a0 and D = b3x

3 + b2x
2 + b1x + b0 we get

(a2x
2 + a1x + a0)(x

2 + 2) + (b3x
3 + b2x

2 + b1x + b0)(2x) = x4 − 6x3 − 18x2 − 12x + 8

which gives

a2 + 2b3 = 1

a1 + 2b2 = −6

2a2 + a0 + 2b1 = −18

2a1 + 2b0 = −12

2a0 = 8

One solution to this over-determined system is

a0 = 4, a1 = −6, a2 = 1, b3 = b2 = b0 = 0, b1 = −12.

∫
x4 − 6x3 − 18x2 − 12x + 8

(x2 + 2)3
dx = −1

2

D

(x2 + 2)2
+

∫
C + 1/2D′

(x2 + 2
dx

=
6x

(x2 + 2)2
+

∫
x2 − 6x− 2

(x2 + 2)
dx
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Repeating the process on the above integral gives us the following result:
∫

x7 − 24x4 − 4x2 + 8x− 8

x8 + 6x6 + 12x4 + 8x2
dx =

1

x
+

6x

(x2 + 2)2 −
x− 3

(x2 + 2)
+

∫
dx

x

The partial fractional decomposition of R(x) is:

− 1

x2
+

1

x
+

1

x2 + 2
− 2

3x + 11

(x2 + 2)2 +
48

(x2 + 2)3

9.3 Horowitz-Ostrogradsky Algorithm

Ostrogradskys algorithm was known in the mid 1800’s, but was not widely used. It also
computes the rational part of the integral, but it reduces to solving systems of linear algebraic
equations instead of solving polynomial Diophantine equations as in the previous example.
Start as before with

R =
A

Q
, Q = Q1Q

2
2Q

3
3 . . . Qn

n

and let
Q# = gcd(Q,Q′), Q∗ = Q/Q#.

We can find polynomials B and C so that

A = B′Q∗ −B

(
Q∗Q#′

Q#

)
+ CQ#, deg(B) = deg(Q#)− 1, deg(C) = deg(Q∗)−1

which reduces to a system of linear equations! The solution to the integration problem is
then:

∫
A

Q
=

∫ B′Q∗ −B
(

Q∗Q#′

Q#

)

Q
+

∫
CQ#

Q
=

∫ (
B′Q# −BQ#′

(Q#)2

)
+

∫
C

Q∗
∫

A

Q
=

B

Q#
+

∫
C

Q∗

So
Q# = gcd (Q,Q′) = x5 + 4x3 + 4

Q∗ = Q
/
Q# = x3 + 2x

n = deg(Q#)− 1 = 4, m = deg (Q∗)− 1 = 2

H = A−Q∗ d

dx

(
n∑

i=0

bix
i

)
+

(
n∑

i=0

bix
i

)
Q∗Q#′

Q#
−Q#

(
m∑

j=0

cjx
j

)

= (1− c2) x7 + (b4 − c1) x6 + (2b3 − c0 − 4c2) x5

+ (3b2 − 6b4 − 4c1 − 24) x4 + 4 (b1 − b3 − c0 − c2) x3

+ (5b0 − 2b2 − 4c1 − 4) x2 + 4 (2− c0) x + 2 (b0 − 4)

= 0
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This system has a unique solution

(b0, b1, b2, b3, b4, c0, c1, c2) = (4, 6, 8, 3, 0, 2, 0, 1) .

This gives us as a solution to the integration problem

∫
x7 − 24x4 − 4x2 + 8x− 8

x8 + 6x6 + 12x4 + 8x2
dx =

3x3 + 8x2 + 6x + 4

x5 + 4x34x
+

∫
x2 + 2

x3 + 2x
dx

=
3x3 + 8x2 + 6x + 4

x5 + 4x34x
+

∫
dx

x

Maple
1

x
− 1

4

22x− 12

x2 + 2
+ 6

x

(x2 + 2)2
+

9

2

x

x2 + 2
+

∫
dx

x

Mathematica
1

x
+

6x

(2 + x2)2
+

3− x

2 + x2
+

∫
dx

x

Derive
1

x
− x3 − 3x2 − 4x− 6

(x2 + 2)2
+

∫
dx

x

TI-89

∫
dx

x
− x3 − 3x2 − 4x− 6

(x2 + 2)2
+

1

x

9.4 Extensions

There was a lot of work done on this problem in the nineteenth century. They were able to
show

1. If the integral of an algebraic function is elementary, then it must be of the form
∫

y dx = R0(x) +
∑

k

ck log (Rk(x))

where the Rk are all rational functions and the number of terms in the sum is finite
but undetermined.

2. If the integral I =
∫

f egdx is elementary, and f and g are elementary then I is of the
form I = Reg, where R is a rational function of x, f , and g.

This last one is sufficient to show why there is no elementary formula for
∫

ex2
dx. If

there is an elementary functional antiderivative, then I =
∫

ex2
dx = R · ex2

where R is a
rational function of x. Differentiating both sides we get

ex2

= I ′ = R′ ex2

+ 2xR ex2
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Then, equating coefficients
R′ + 2xR = 1

R is a rational function, say N/D, so by the quotient rule

N ′D −ND′

D2
+ 2x

N

D
= 1

N ′D −ND′ + 2xND = D2

The degrees of these expressions are d+n− 1, d+n− 1, d+n+1, and d2, respectively. The
first two terms cannot equal one another unless N = D, which implies that R is a constant.
We cannot balance this equation, so no values of n and d will work. Thus, I does not have
an elementary antiderivative.

9.5 Further Extensions

In 1834 Liouville extended Laplaces theorem to algebraic functions if they have an elementary
antiderivative.

Theorem 7 (Liouville, 1834) If f(x) is an algebraic function of x and if
∫

f(x) dx is
elementary, then ∫

f(x) dx = U0 +
n∑

j=1

Cj ln(Uj)

where the Cj’s are constants and the Uj’s are algebraic functions of x.

Theorem 8 (Strong Liouville Theorem, 1835) (a) If F is an algebraic function of x,
y1,. . . , ym, where y1, . . . , ym are functions of x whose derivatives dy1/dx, . . . ,dym/dx
are each algebraic functions of x, y1,. . . , ym, then

∫
F (x, y1, . . . , ym) dx is elementary

if and only if ∫
F (x, y1, . . . , ym) dx = U0 +

n∑
j=1

Cj ln(Uj)

where the Cj’s are constants and the Uj’s are algebraic functions of x, y1, . . . , ym.

(b) If F (x, y1, . . . , ym) is a rational function and dy1/dx,. . . ,dym/dx are rational functions
of x, y1, . . . , ym, then the Uj’s in part (a) must be rational functions of x, y1, . . . , ym.

From this Liouville proved the following:
If f(x) and g(x) are rational functions with g(x) nonconstant, then

∫
f(x)eg(x)dx is elemen-

tary if and only if there exists a rational function R(x) such that f(x) = R′(x) + R(x)g′(x).
Using this you can show that the following integrals are not elementary:

∫
x2neax2

,

∫
x−necx
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∫ √
log x =

∫
2t2et2 , where t2 = log x

∫
1√

log x
=

∫
2et2 , where t2 = log x

∫
eax

√
x

=

∫
2eat2 , where t2 = x

∫
eex

=

∫
et

t
, where t = ex

∫
1

log x
=

∫
et

t
, where t = log x

Hardy extended Liouville’s work and in 1905 proved the following:
Liouville-Hardy (1905): If f(x) is a rational function, then

∫
f(x) log(x)dx is elementary

if and only if there exists a rational function g(x) and a constant C such that f(x) =
C/x + g′(x) log(x).

Independently of the others the Russian mathematician Chebyshev worked on the ques-
tion of which arc lengths and surface areas are integrable in finite terms. He arrived at the
following result:
Chebyshev’s Theorem (1853) If p, q, and r are rational numbers and a and b are real
numbers with abr 6= 0, then

∫
xp(a + bxr)q dx is elementary if and only if at least one of

(p + 1)/r, q, or (p + 1)/r + q is an integer.

∫
3
√

1 + x2dx

is not elementary. Here, p = 0, r = 2, q = 1/3, so (p+1)/r = 1/2, q = 1/3, (p+1)/r+q = 5/6.

Example 9.5.1 Consider the arc length of the graph of f(x) = xk, given by
∫ √

1 + k2x2k−2 dx.
This integral is elementary if and only if either 1/(2k − 2) or 1/(2k− 2) + 1/2 is an integer,
where k 6= 1. Thus, the related arc length integral for f(x) = xk is elementary if and only if
k = 1 or k = 1 + 1/n, where n is an integer. If follows that, for example,

∫ √
1 + x3 dx and∫ √

1 + x−4 dx are nonelementary integrals. [This last integral is the arc length integral for
f(x) = 1/x.]

Example 9.5.2 A similar calculation can be performed for integrals representing the area
of the surface obtained by revolving the graph of f(x) = xk about the x-axis. These integrals
are elementary if and only if k = 1 or k = 1 + 2/n, where n is an integer.


