
Chapter 13

Multiple Integrals

13.1 Double and Triple Integrals

Maple evaluates double and triple integrals as iterated integrals. This is the way that
we would expect, and we will not spend much time with that situation. So to evaluate
∫ 4

2

∫ 2

1
x2y dydx we would use

> Int(Int(x^2*y,y=1..2),x=2..4) = int(int(x^2*y,y=1..2),x=2..4);
∫ 4

2

∫ 2

1

x2 y dy dx = 28

Notice that you really need to think of this integration working from the inside out. You
have an inner integral and an outer integral. The inner integral needs to be done first.

Of course, rectangular regions are not where the trouble lies. It is with more complicated
regions that most of us have problems. The ability to graph the region, look at it, and then
dissect it into usable pieces is extremely important.

Problem 1: Calculate
∫ ∫

R
xy2 dA, where R is the region between the circle of radius 1,

centered at (2, 0) and the circle of radius 2 centered at the origin.

Solution:

First, plot the curves to look at the region.

> plot({[2+cos(t),sin(t),t=0..2*Pi],[2*cos(t),2*sin(t),t=0..2*Pi]
> },scaling=constrained, color=[red,blue],thickness=3);

114

13.1. DOUBLE AND TRIPLE INTEGRALS 115

–2

–1

0

1

2

–2 –1 1 2 3

The easiest way to describe this region is to look at x as a function of y, then integrate.
The integral is given by

∫ b

−b

∫

√
4−y2

2−
√

1−y2

xy2 dxdy

where b is the point of intersection of the two circles.

> solve(2-sqrt(1-y^2)=sqrt(4-y^2),y);

−1
4

√
15, 1

4

√
15

> b := %[2];

b := 1
4

√
15

> J := Int(Int(x*y^2,x = 2-sqrt(1-y^2) .. sqrt(4-y^2)),y = -’b’ ..
> ’b’)=int(int(x*y^2,x = 2-sqrt(1-y^2) .. sqrt(4-y^2)),y = -b .. b);

J :=

∫ b

−b

∫

√
4−y2

2−
√

1−y2

xy2 dx dy = − 13

256

√
15 +

1

2
arcsin(

1

4

√
15)

> evalf(rhs(J));

.4623831000

Problem 2: Find
∫ ∫ ∫

R
z dV where R is the region inside the sphere x2 + y2 + z2 = 1 and

above the paraboloid z = (x− 1)2 + y2.
Solution:
Let’s look at the region.

> with(plots):
> sphere:=plot3d([sin(phi)*cos(theta),sin(phi)*sin(theta),cos(phi)],phi
> =0..Pi,theta=0..2*Pi,scaling=constrained,shading=zgreyscale):
> paraboloid :=
> plot3d((x-1)^2+y^2,x=-3..3,y=-3..3,shading=zgreyscale):

> display3d({sphere,paraboloid},scaling=constrained,
> view=[-.5..1.5,-1.5..1.5,-.5..1.5]);

116 CHAPTER 13. MULTIPLE INTEGRALS

First, when we slice through this region, we see that below we are bounded by the
paraboloid, and above we are bounded by the sphere, so (x − 1)2 + y2 ≤ z and z ≤
√

1− x2 − y2. Now we need to know where these two surfaces meet. This is found by
solving

> S:= solve(x^2+y^2+((x-1)^2+y^2)^2=1,y);

S :=
1

2

√

−6 + 2
√
9− 8x− 4x2 + 8x, −1

2

√

−6 + 2
√
9− 8x− 4x2 + 8x,

1

2

√

−6− 2
√
9− 8x− 4x2 + 8x, −1

2

√

−6− 2
√
9− 8x− 4x2 + 8x

Note that the last two solutions have the potential for complex evaluation in our range.
Check it yourself to see, but we may ignore these solutions. Thus, let y0 be the positive
solution.

> y0 := S[1];

y0 :=
1

2

√

−6 + 2
√
9− 8x− 4x2 + 8x

The outer integral goes from 0 to 1, so we now have that the integral is given by:

∫ 1

0

∫ y0

−y0

∫

√
1−x2−y2

(x−1)2+y2

z dzdydx

> Int(Int(int(z,z = (x-1)^2+y^2 .. sqrt(1-x^2-y^2)),y = -’y0’ ..
> ’y0’),x = 0 .. 1)=int(int(int(z,z = (x-1)^2+y^2 .. sqrt(1-x^2-y^2)),y
> = -y0 .. y0),x = 0 .. 1);

13.2. THE JACOBIAN AND CHANGE OF VARIABLES 117

∫ 1

0

∫ y0

−y0

1

2
− 1

2
x2 − 1

2
y2 − 1

2
((x− 1)2 + y2)2 dy dx =

∫ 1

0

− 1

160
%1(5/2) +

1

12
(−1

2
− (x− 1)2)%1(3/2) +

1

2

√
%1− 1

2
x2
√
%1− 1

2
(x− 1)4

√
%1 dx

%1 := −6 + 2
√
9− 8x− 4x2 + 8x

> evalf(rhs(%));

.1722182285

13.2 The Jacobian and Change of Variables

Many, many times we need to use a coordinate system other than the tried-and-true rectan-
gular coordinate system. It could be polar coordinates, cylindrical coordinates or spherical
coordinates, or others. Type ?coords to see what other coordinate systems Maple has in
store for you.

When you change from one coordinate system to another, we have to take into account
the relative change of the coordinate change. When we replace x by 2u, when need to change
dx to 2du - following along the change. When this is done in several variables, we have to
use our old friend the Jacobian.

When making a change of variables in a double integral, we express the old variables ,
say x and y, in terms of the new variables u and v. The area element, dxdy is replaced by
where is the absolute value of the Jacobian determinant

J(u, v) =

∣

∣

∣

∣

∂(x, y)

∂(u, v)

∣

∣

∣

∣

=
∂ x

∂ u

∂ y

∂ v
− ∂ x

∂ v

∂ y

∂ u
.

The process is similar for three-dimensions. The problem usually occurs in determining
the new limits of integration.

Problem 1: Integrate xy2 over the region between the two loops of the limaçon of Pascal,
the curve given by r = 1 + 2 cos(θ) in polar coordinates.

Solution
We have to load the Jacobian and the determinant with the linalg package.

> with(linalg):

> plot([1+2*cos(theta),theta,theta=0..2*Pi],coords=polar,scaling=constr
> ained,thickness=3);

118 CHAPTER 13. MULTIPLE INTEGRALS

–1.5

–1

–0.5

0

0.5

1

1.5

0.5 1 1.5 2 2.5 3

To find the area of the region between the two loops using rectangular coordinates is a
mess. If we look at this limaçon, the outer loop is determined by − 2π

3
≤ θ ≤ 2π

3
. The smaller

loop is determined by 2π
3
≤ θ ≤ 4π

3
, but there r < 0.

> xpol := r*cos(theta): ypol := r*sin(theta):
> J1 :=
> Int(Int(xpol*ypol^2*r,r=0..1+2*cos(theta)),theta=-2*Pi/3..2*Pi/3)=int(
> int(xpol*ypol^2*r,r=0..1+2*cos(theta)),theta=-2*Pi/3..2*Pi/3);

J1 :=

∫ 2/3π

−2/3π

∫ 1+2 cos(θ)

0

r4 cos(θ) sin(θ)2 dr dθ =
405

224

√
3 + 2π

> J2 :=
> Int(Int(xpol*ypol^2*r,r=0..1+2*cos(theta)),theta=2*Pi/3..4*Pi/3)=int(i
> nt(xpol*ypol^2*r,r=0..1+2*cos(theta)),theta=2*Pi/3..4*Pi/3);

J2 :=

∫ 4/3π

2/3π

∫ 1+2 cos(θ)

0

r4 cos(θ) sin(θ)2 dr dθ = −405

224

√
3 + π

> rhs(J1)-rhs(J2);

405

112

√
3 + π

Cylindrical Coordinates

In cylindrical coordinates the change is x = r cos(θ), y = r sin(θ), and z = z. The volume
element then is found from the Jacobian

> det(jacobian([r*cos(theta),r*sin(theta),z],[r,theta,z]));

cos(θ)2 r + sin(θ)2 r

> simplify(%);

r

Thus the volume element is dV = r dr dθ dz.
Problem 2: Find the volume inside both the sphere of radius 3 centered at the origin and
the cylinder (x− 2)2 + y2 = 4.

13.2. THE JACOBIAN AND CHANGE OF VARIABLES 119

Solution:
The sphere can be rewritten in cylindrical coordinates as r2 + z2 = 9. The cylinder:

> solve(subs(x=r*cos(theta),y=r*sin(theta),(x-2)^2+y^2=4),r);

0, 4
cos(θ)

cos(θ)2 + sin(θ)2

> simplify(%[2]);

4 cos(θ)

So this is the equation for the cylinder in cylindrical coordinates.

> with(plots):

> sphere := cylinderplot(sqrt(9-z^2),theta=0..2*Pi,z=-3..3):

> cylinder :=
> cylinderplot(4*cos(theta),theta=-Pi..Pi,z=-3..3,color=yellow):

> display({sphere,cylinder},scaling=constrained,shading=z);

To set up the region of integration, we will use the variable r. The values of z will clearly
be trapped in the sphere.

> V := Int(Int(Int(r,z=-sqrt(9-r^2)..sqrt(9-r^2)),
> theta=-arccos(r/4)..arccos(r/4)), r=0..3) =
> int(int(int(r,z=-sqrt(9-r^2)..sqrt(9-r^2)),
> theta=-arccos(r/4)..arccos(r/4)), r=0..3);

V :=

∫ 3

0

∫ arccos(1/4 r)

−arccos(1/4 r)

∫

√
9−r2

−
√

9−r2
r dz dθ dr =

∫ 3

0

4 r
√
9− r2 arccos(

1

4
r) dr

> evalf(rhs(V));

39.74123918

120 CHAPTER 13. MULTIPLE INTEGRALS

13.3 Surfaces and Curves

When we get into 3-dimensional geometry and calculus, we know that we really need to be
able to see the regions about which we are talking. We should be able to use Maple as a
visualization tool. It will do so much more, though.

Load the definitions of the dot product, length, and cross product from earlier.

> with(plots):

Let’s say that we need to plot the curve

> R := t-> [(2+sin(10*t))*cos(t),(2+sin(10*t))*sin(t),cos(10*t)];

R := t→ [(2 + sin(10 t)) cos(t), (2 + sin(10 t)) sin(t), cos(10 t)]

> spacecurve(R(t),t=0..2*Pi,numpoints=501,scaling=constrained,shading=z
> ,thickness=3);

This looks like it wraps around something, doesn’t it?

> curve := %:

> torus :=
> cylinderplot({sqrt(.95-z^2)+2,2-sqrt(.95-z^2)
> },t=0..2*Pi,z=-sqrt(.95)..sqrt(.95),style=PATCHNOGRID,shading=zgreysc
> ale):

> display({torus,curve});

13.4. VELOCITY AND ACCELERATION 121

Another useful command is tubeplot. This puts a tube around a curve. The default
radius is 1, but that can be changed.

> tubeplot(R(t),t=0..2*Pi,numpoints=200,scaling=constrained,radius=1/4,
> shading=zgreyscale);

13.4 Velocity and Acceleration

Let t represent time, then the derivative of position with respect to t is velocity. Thus, if
r(t) represents position, it’s derivative r′(t) is the velocity, v(t). We have an example, how
do we want to differentiate it?

> D(R)(t);

D(R)(t)

We don’t get what we would expect.

122 CHAPTER 13. MULTIPLE INTEGRALS

> diff(R(t),t);

[10 cos(10 t) cos(t)− (2 + sin(10 t)) sin(t), 10 cos(10 t) sin(t) + (2 + sin(10 t)) cos(t),

−10 sin(10 t)]
but this is not a procedure. We will have to use unapply here.

> V := unapply(diff(R(t),t),t);

V := t→ [10 cos(10 t) cos(t)− (2 + sin(10 t)) sin(t),

10 cos(10 t) sin(t) + (2 + sin(10 t)) cos(t), −10 sin(10 t)]
Just as the derivative of position is velocity, so is the derivative of velocity is acceler-

ation.

> A := unapply(diff(V(t),t),t);

A := t→ [−100 sin(10 t) cos(t)− 20 cos(10 t) sin(t)− (2 + sin(10 t)) cos(t),

−100 sin(10 t) sin(t) + 20 cos(10 t) cos(t)− (2 + sin(10 t)) sin(t), −100 cos(10 t)]
We would like to draw the arrows that represent these three vectors. To make the arrows

we will need the following definitions.

> aperp := V -> unit(VP &x V);

aperp := V → unit(VP &xV)

Remember that this will give a vector that is perpendicular to both V and Vp, as long
as V and Vp are not parallel. If we happen to have a case when V and Vp are parallel, unit
will return an error because it will try to divide by 0. In that case, simply choose a different
Vp.

We will choose the following vector as our default Vp.

> VP := [1/2,1/2,1/sqrt(2)]:

The following command will draw an arrow representing the vector V , starting at the
point R. The line goes from the tip of the arrow to one barb, the other barb, back to the
tip and finally to the base of the arrow.

> arrow1 := (R,V) ->
> polygonplot3d([evl(R+V),evl(R+V-.1*unit(V)+.05*aperp(V)),evl(R+V-.1*un
> it(V)-.05*aperp(V)),evl(R+V),evl(R)],style=LINE,args[3..nargs]):

> arrow := (R,V) -> arrow1(evalf(R),evalf(V),args[3..nargs]):

The following procedure then plots the curve together with the two arrows starting at
R(t): a blue one for the velocity V(t) and a red arrow for the acceleration A(t). The scaling
factors of 1/5 and 1/25 are chosen to make things look nice.

> plotav := t ->
> display(
> {curve,arrow(R(t),unit(V(t)),color=blue),arrow(R(t),unit(A(t)),color=
> red,orientation=[130,52])},scaling=constrained);

plotav := t→ display({curve, arrow(R(t), unit(V(t)), color = blue),

arrow(R(t), unit(A(t)), color = red , orientation = [130, 52])},
scaling = constrained)

13.4. VELOCITY AND ACCELERATION 123

> plotav(1);

This can also be animated as R(t) traverses part of the curve.
> display([seq(plotav(kk*Pi/20),kk=0..50)],insequence=true,scaling=cons
> trained);

The Downhill Skier

We can describe part of a hill with the equation:

z = −(x+ y)

(

.13 + .1 sin

(

x+ y

8

))

− .15x sin

(

x

8
− 3 y

40

)

where x, y, and z are measured in meters. A downhill skier starts from rest at the origin
and follows the curve y = .7 x− 4 sin(x

7
) for x in the interval (0,40). Study the forces felt by

the skier. In particular, does he or she ever leave the surface of the snow?
Begin by defining the hill and the skier’s path. We will use the variable x as the time

variable.

> f := (x,y) ->-(x+y)*(.13+.1*sin((x+y)/8))-.15*x*sin(x/8-3*y/40);

f := (x, y)→ −(x+ y) (.13 + .1 sin(
1

8
x+

1

8
y))− .15x sin(

1

8
x− 3

40
y)

> yp := .7*x-4*sin(x/7); R:=[x,yp,f(x,yp)]:

yp := .7x− 4 sin(
1

7
x)

Now to plot the surface and the path, we could use color for the path, or we can move
the surface down, very slightly in order to see the curve.

> surface :=
> plot3d(f(x,y)-0.2,x=0..40,y=-5..40,style=PATCHNOGRID,shading=zgreyscal
> e,ambientlight=[.1,.1,.4],light=[69,60,.7,.7,.7]):

> curve := spacecurve(R,x=0..40,color=black,thickness=3):

> display({surface,curve
> },orientation=[-15,45],scaling=constrained,axes=BOXED);

124 CHAPTER 13. MULTIPLE INTEGRALS

0

10

20

30

40

x

0 10 20 30 40

y

–10

0

Consider the contour plot for this surface and curve.

> cplot := contourplot3d(f(x,y),x=0..40,y=0..30):

> display({cplot,curve
> },orientation=[-90,0],axes=BOXED,shading=none,style=CONTOUR);

0 10 20 30 40
x

0

5

10

15

20

25

30

y

So note that the skier starts with a gentle decline, up to about x = 15. From that point
to about x = 20, the skier is going slightly uphill. From x = 20 and beyond, there is a steep
downhill towards a pit.

We have to make some simplifying assumptions.

1. We assume that the only force acting on the skier that has a component in the direction
of the velocity vector is gravity.

2. We assume that the skier does not raise or lower the center of gravity, by bending or
straightening the knees or hips.

13.4. VELOCITY AND ACCELERATION 125

With these assumptions, the skier’s total energy (potential + kinetic) is constant. This
energy is given by the equation mv2

2
+mgz. Here

m = skier’s mass; v = skier’s speed; g = 9.8m/sec2, the acceleration
due to gravity.

At the beginning of the run, the velocity and height are both 0, v = 0 and z = 0. Thus,
this constant has to be 0.

> g := 9.8; v := sqrt(-2*g*R[3]):

g := 9.8

Now we want to find the velocity vector V. To do so we will differentiate R. The unit
tangent vector, T, is the unit vector in the direction of the velocity vector. The velocity is
then v times this unit vector.

> T := evl(unit(diff(R,x))):

> V := evl(v*T):

Now to find the acceleration, we need the Chain Rule. A = dV
dt

= dx
dt

dV
dx

= V1
dV
dx
.

> A := evl(V[1]*diff(V,x)):

The forces acting on the skier are the gravitational force, [0, 0,−mg], and the force Fs

exerted by the skis on the snow. So, Fs = mA+ [0, 0,mg].

> Fs := evl(m*A+[0,0,m*g]):

We assumed that the only force on the skier that has a component in the direction of
the velocity vector is gravity, therefore, the component of the above vector in the direction
of the tangent vector, T, should be zero. Most of the force between the skis and the snow
surface should be perpendicular to the surface, though there can be some sideways force,
which is necessary to keep the skier on the right path. The perpendicular to the surface is
the normal vector, and that is given by the vector Ns = [−fx,−fy, 1].

Note that there is another normal vector to the curve - the principal normal vector

and these are different. Let Fn denote the component of force in this direction.

> Ns := (x,y) -> evl(unit([-D[1](f)(x,y),-D[2](f)(x,y),1]));

Ns := (x, y)→ evl(unit([−D1(f)(x, y), −D2(f)(x, y), 1]))

> Fn := Fs &. Ns(x,yp):

(No, you really don’t want to see that expanded!)
The sideways force will be in a direction perpendicular to both the tangent vector to

the curve and the normal to the surface. Use the cross product to compute this. Of course
by the definition of the cross product and the two vectors that we are using, this sideways
force will always point to the skier’s right, so we will call the component of the force in that
direction, Fr.

> U := evl(T &x Ns(x,yp)):

> Fr := Fs &. U:

Now, we will plot these forces Fr, Fn, and |Fs| as functions of x. We need an estimate
for the mass of the skier, or we can normalize everything and set the mass to be 1.

> m := 1:

126 CHAPTER 13. MULTIPLE INTEGRALS

> Fs &. Fs:

> lFs := sqrt(Fs &. Fs):

> plot({Fn,Fr,lFs},x=0..40,color=[black,blue,red],thickness=3);

0

20

40

60

80

100

10 20 30 40
x

So we have that the normal force is the blue curve, the sideways force is the black curve,
and the magnitude of the force of the skis on the surface is the red curve. Note that the red
curve is always the uppermost - and this should be so, since the other two are components of
Fs in certain directions. Note that the sideways force seems to be small in comparison to the
normal force. This actually follows nicely from the physical considerations. In general, the
forces are a result of friction between two surfaces pressed together, the sideways force is no
greater than some fraction (the coefficient of friction) of the normal force. Thus |Fr| ≤ cFn
for some constant c. Any attempt to violate this would result in the skier slipping off the
path.

The most obvious feature of the graph is the peak that all three take together near x = 35
where |Fs| rises to over 100 times the mass of the skier. That means that at that point the
skier’s legs would have to support more than 10 times his/her normal weight - which is
10(mg) = 98m. Not many people can do that, even the heavy weight lifters. The actual
result there might be a crash! Due to the forces acting on the skier there, it could result in
serious injury.

Before that happens, note that at about x = 22 something else of interest occurs. At
that point both Fn and Fr pass through 0. Recall that |Fr| ≤ c Fn, so that as Fn goes to 0,
Fr must also go to 0. What is happening here? Skis can push on the snow, but they cannot
pull it, so Fn can never be negative. Instead, what happens when Fn hits 0 is that the skis
leave the snow surface and the skier flies through the air. After that point, our formula is
no longer valid, and the possible crash later on may actually be avoided - we don’t know!

Now let’s look in detail at what is happening at about x = 10. Where is the skier
and what are the forces acting on him? The easiest way to do this is to set x equal to
10, evaluate all of the forces, then redefine x as a variable.

> dvdx := diff(v,x):

13.4. VELOCITY AND ACCELERATION 127

> x := 10: R0 := evalf(R); v0 := evalf(v); T0 := evalf(T);

R0 := [10., 3.040387694, −4.276707539]

v0 := 9.155515702

T0 := [.7712439854, .4774018353, −.4210346804]
The skier has dropped 4.28 meters in altitude from the start and is travelling at about

9.16 m/s (almost 33 km/h, or almost 20 mph). We can express the direction of motion given
by the tangent vector T in terms of angles in spherical coordinates, centered at the point
where x = 10.

> phi0 := evalf(arccos(T0[3])*180/Pi);

φ0 := 114.8999284

> theta0 := evalf(arctan(T0[2],T0[1])*180/Pi);

θ0 := 31.75760468

So at this moment, the skier’s direction is about 24 degrees below horizontal (φ = 90)
and about 32 degrees counterclockwise from the positive x-axis.

> A0 := evalf(A);

A0 := [2.342335426, 5.478990179, .7031539735]

Now, the component of the skier’s acceleration in the direction of the tangent vector is
the rate of change of speed, which is calculated by the chain rule as dv

dt
= dv

dx
dx
dt
. This should

also be the component of the gravitational acceleration [0, 0,−g] because we assumed that
the non-gravitational forces have no component in this direction. Thus, we need to compute
A ·T at this point, dv

dt
at this point and the gravitational component in this direction at this

point.

> [A0 &. T0, evalf(dvdx*V[1]),[0,0,-g]&.T0];

[4.126139868, 4.126139870, 4.126139868]

These are pretty close! Let’s look at the force Fs of the snow on the skis, its magnitude
and the components normal to the snow surface and sideways along the surface.

> Fs0 := evalf(Fs); len(Fs0); Fn0 := evalf(Fn); Fr0:=evalf(Fr); Ns0 :=
> evalf(Ns(x,yp));

Fs0 := [2.342335426, 5.478990179, 10.50315397]

12.07568267

Fn0 := 11.23306395

Fr0 := −4.431747544

Ns0 := [.4029343439, .1459030579, .9035243286]

Now let’s look at the situation:

> VP := T0: origin := [0,0,0]: U0:= evalf(U):

> B := evl(unit(Fs0)): C := evl(VP &x B): p:= 1/(C &. U0):
> rleg := polygonplot3d([evl(-.3*p*U0),evl(-.3*C+.9*B),evl(-.2*C+.5*B),
> evl(-.3*p*U0+.1*C)],color=tan):
> lleg := polygonplot3d([evl(+.3*p*U0),evl(+.3*C+.9*B),evl(+.2*C+.5*B),
> evl(+.3*p*U0-.1*C)],color=tan):

128 CHAPTER 13. MULTIPLE INTEGRALS

> body:= polygonplot3d([evl(-.3*C+.9*B), evl(-.2*C+B),
> evl(-.1*C+1.05*B), evl(+.1*C+1.05*B), evl(+.1*C+.7*B),
> evl(.65*B),evl(-.1*C+.7*B), evl(-.1*C+1.05*B), evl(.1*C+1.05*B),
> evl(.2*C+B), evl(.3*C+.9*B), evl(.2*C+.5*B), evl(.55*B),
> evl(-.2*C+.5*B)], color=tan):

> labels := textplot3d({[op(evl(.15*Fn0*Ns0+.4*U0)),‘ Fn Ns
> ‘,align=RIGHT], [op(evl(.28*Fn0*Ns0-.45*U0)),‘ Fr U ‘],
> [op(evl(.15*Fs0-.4*U0)),‘ Fs ‘], [op(evl(.2*A0-.4*U0)),‘ A ‘],
> [op(evl([0,0,-.15*g]-.4*U0)),‘ -g k ‘]}, color=black):

> display({arrow(origin, A0/4,color=red), arrow(origin, Fs0/4,
> color=blue), arrow(origin,[0,0,-g/4], color=blue),
> arrow(origin,Fn0*Ns0/4,color=green),arrow(Fn0*Ns0/4,Fr0*U0/4,color=gre
> en),
> polygonplot3d([evl(-2*U0),evl(2*U0)],style=wireframe,color=magenta),
> rleg,
> body,lleg,labels},orientation=[theta0,phi0],scaling=constrained);

 -g k

 A

 Fn Ns Fs

 Fr U

13.4.1 Curvature, Torsion and the Frenet Frame

When you studied curves in 3-space, we found that there were three special vectors for each
curve, and they carried a lot of information about the curve. They were the unit tangent
vector, the unit normal vector (or principal normal), and the binormal vector. You start with
the unit tangent vector, T. You have to re-parameterize the curve in terms of the arclength
parameter, s. Then dT

ds
points in the normal direction, and the principal normal vector is

the unit vector in that direction. We define the curvature to be κ =
∣

∣

dT
ds

∣

∣. This makes the
principal normal vector N = 1

κ
dT
ds

. The binormal is defined to be the cross product of the
unit tangent and the principal normal vector. Then we can show that the derivative of the
binormal is parallel to the principal normal and dB

ds
= −τ N , and the quantity τ is called

the torsion. The curvature, κ, measures how much the path curves at a point, while the
torsion, τ , measures how much it twists. Normally, we do not have curves parameterized by

13.4. VELOCITY AND ACCELERATION 129

arclength - it is hard to do so, usually. We usually have the curve parameterized by another
variable t. Then by the Chain Rule if we let v = ds

dt
denote the speed, then d

ds
= 1

v
d
dt
. This

leads to an alternative set of formulas for the quantities above which, while they may look
more complicated, lead to simpler, less complicated calculations.

V × A = v3 κB

N = B × T

τ =
V × A

|V × A|2
dA

dt

Let’s look at the curve x = cos(t), y = sin(t), and z =
1

2
sin(2t). Find the curvature and

torsion for this curve.

> x := ’x’:

> R := [cos(t),sin(t),sin(2*t)/2]:

> V := diff(R,t); A := diff(V,t); dAdt := diff(A,t);

V := [−sin(t), cos(t), cos(2 t)]

A := [−cos(t), −sin(t), −2 sin(2 t)]

dAdt := [sin(t), −cos(t), −4 cos(2 t)]

> v := combine(len(V),trig);

v :=
1

2

√

6 + 2 cos(4 t)

Note that unit(V) or evl(V/v) will both give the unit tangent vector, T. However,
unit(V) will need to be simplified.

> T := evl(V/v);

T := [−2
sin(t)

√

6 + 2 cos(4 t)
, 2

cos(t)
√

6 + 2 cos(4 t)
, 2

cos(2 t)
√

6 + 2 cos(4 t)
]

We will need V × A several times, so let’s go ahead and calculate it.

> VxA := combine(V &x A,trig);

VxA := [−1

2
sin(3 t)− 3

2
sin(t), −3

2
cos(t) +

1

2
cos(3 t), 1]

By our formula above this is v3κB, so this vector has length v3κ and the unit vector in
this direction is the binormal, B. So we can calculate B and κ.

> B := combine(unit(VxA),trig);

B := [
−sin(3 t)− 3 sin(t)
√

14− 6 cos(4 t)
,
−3 cos(t) + cos(3 t)
√

14− 6 cos(4 t)
, 2

1
√

14− 6 cos(4 t)
]

> kappa := combine(len(VxA)/v^3,trig);

κ := 4

√

14− 6 cos(4 t)

(6 + 2 cos(4 t))(3/2)

Now, N is the cross product B×T, and τ is given by the formula above.

130 CHAPTER 13. MULTIPLE INTEGRALS

> N := combine(B &x T,trig);

N := [
−6 cos(t)− 3 cos(3 t) + cos(5 t)
√

14− 6 cos(4 t)
√

6 + 2 cos(4 t)
,
−6 sin(t) + sin(5 t) + 3 sin(3 t)
√

14− 6 cos(4 t)
√

6 + 2 cos(4 t)
,

−8
sin(2 t)

√

14− 6 cos(4 t)
√

6 + 2 cos(4 t)
]

> tau := combine(VxA &. dAdt/len(VxA)^2,trig);

τ := 6
cos(2 t)

−7 + 3 cos(4 t)
Now, we want to see the curve and these three vectors, (T,B,N) - called the Frenet

frame - at different points. First we will make them into procedures.

> R := unapply(R,t):

> T := unapply(T,t):

> N := unapply(N,t): B := unapply(B,t):

> kappa := unapply(kappa,t): tau := unapply(tau,t):

> curve := spacecurve(R(t),t=0..2*Pi,color=black):

Now we want to draw the vectors, T(t), B(t), and N(t) at each point R(t) along the
curve. Color code them so that T is red, B is blue, and N is magenta.

> frenet := t->
> display(
> {curve,arrow(R(t),T(t),color=red),arrow(R(t),N(t),color=magenta),arro
> w(R(t),B(t),color=blue)},thickness=3);

frenet := t→ display({curve, arrow(R(t), B(t), color = blue),

arrow(R(t), N(t), color = magenta), arrow(R(t), T(t), color = red)}, thickness = 3)
> display([seq(frenet(kk*Pi/8),
> kk=0..15)],insequence=true,scaling=constrained);

13.4. VELOCITY AND ACCELERATION 131

Let’s take a look at our inductor running around the torus:

> R := [(2+sin(10*t))*cos(t),(2+sin(10*t))*sin(t),cos(10*t)];

R := [(2 + sin(10 t)) cos(t), (2 + sin(10 t)) sin(t), cos(10 t)]

> V := diff(R,t): A := diff(V,t): dAdt := diff(A,t):

> v := combine(len(V),trig):

> T := evl(V/v):

> VxA := combine(V &x A,trig):

> B := combine(unit(VxA),trig):

> kappa := combine(len(VxA)/v^3,trig):

> N := combine(B &x T,trig):

> tau := combine(VxA &. dAdt/len(VxA)^2,trig):

> R := unapply(R,t):

> T := unapply(T,t):

> N := unapply(N,t): B := unapply(B,t):

> kappa := unapply(kappa,t): tau := unapply(tau,t):

> curve := spacecurve(R(t),t=0..2*Pi,numpoints=501,color=black):
> display([seq(frenet(kk*Pi/20),
> kk=0..41)],insequence=true,scaling=constrained);

