Appendix C

Irrationality of e

The series expansion of the number e is given by

$$
e=\sum_{n=0}^{\infty} \frac{1}{n!},
$$

which we will prove later. We shall use this series representation of e to show that it is irrational. The proof is due to Joseph Fourier.
Theorem C. 1 e is irrational.
Assume not, that is, assume that e is rational. Suppose $e=a / b$, for some positive integers a and b. Construct the number

$$
x=b!\left(e-\sum_{n=0}^{b} \frac{1}{n!}\right) .
$$

First we will show that x is an integer, then show that x is less than 1 and positive. This contradiction will establish the irrationality of e.

To see that x is an integer, note that

$$
\begin{aligned}
x & =b!\left(e-\sum_{n=0}^{b} \frac{1}{n!}\right) \\
& =b!\left(\frac{a}{b}-\sum_{n=0}^{b} \frac{1}{n!}\right) \\
& =a(b-1)!-\sum_{n=0}^{b} \frac{b!}{n!} \\
& =a(b-1)!-\sum_{n=0}^{b} \frac{1 \cdot 2 \cdot 3 \cdots(n-1)(n)(n+1) \cdots(b-1)(b)}{1 \cdot 2 \cdot 3 \cdots(n-1)(n)} \\
& =a(b-1)!-\sum_{n=0}^{b}(n+1)(n+2) \cdots(b-1)(b)
\end{aligned}
$$

and this last expression is an expression involving only integers. Thus, since x is a sum of integers, it is an integer.

Clearly, x is positive since $x=b!\sum_{n=b+1}^{\infty} \frac{1}{n!}>0$. Now, notice that

$$
\begin{aligned}
x & =b!\sum_{n=b+1}^{\infty} \frac{1}{n!} \\
& =\frac{1}{b+1}+\frac{1}{(b+1)(b+2)}+\frac{1}{(b+1)(b+2)(b+3)}+\cdots \\
& <\frac{1}{b+1}+\frac{1}{(b+1)^{2}}+\frac{1}{(b+1)^{3}}+\cdots \\
& =\frac{1}{(b+1)-1}=\frac{1}{b} \\
& \leq 1 .
\end{aligned}
$$

Now, if $x=1$, then $b=1$ and $e=\frac{a}{b}=a$ is an integer, which we know is not true. Thus, $0<x<1$ and x is an integer. This contradiction gives us then that e is irrational.

