Appendix C

Irrationality of e

The series expansion of the number e is given by
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which we will prove later. We shall use this series representation of e to show that it
is irrational. The proof is due to Joseph Fourier.

Theorem C.1 e is irrational.

Assume not, that is, assume that e is rational. Suppose e = a/b, for some positive
integers a and b. Construct the number
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First we will show that x is an integer, then show that x is less than 1 and positive.

This contradiction will establish the irrationality of e.
To see that x is an integer, note that
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and this last expression is an expression involving only integers. Thus, since x is a
sum of integers, it is an integer.
Clearly, z is positive since z = b!) ", | = > 0. Now, notice that
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Now, if z = 1, then b = 1 and e = § = a is an integer, which we know is not true.
Thus, 0 < x < 1 and z is an integer. This contradiction gives us then that e is

irrational.
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