
Appendix D

Irrationality of π

D.1 First Proof

For any integer n and real number r we can define a quantity An by the definite
integral

An =

∫ 1

−1

(1− x2)n cos(rx) dx.

If you integrate this by parts you find that the quantities An for n = 2, 3, 4, . . .
satisfy the recurrence relation

An =
2n(2n− 1)An−1 − 4n(n− 1)An−2

r2
.

We can obviously express An−1 and An−2 in terms of lower members of the recurrence,
and so on, all the way back to A0 and A1. The result is

An =
n!

r2n+1
[P (r) sin(r)−Q(r) cos(r)] ,

where P (r) and Q(r) are polynomials in r of degree less than 2n − 1 with integer
coefficients.

Now assume that π = a/b, where a and b are integers, and let’s set r = π/2. Of
course, this means that r = a/(2b). If we substitute this value into the preceding
equation, and remember that sin(π/2) = 1 and cos(π/2) = 0, we have

( a

2b

)2n+1

An = n!P (a/2b).

Multiplying both sides by (2b)2n+1 and dividing by n! gives

a2n+1An

n!
= (2b)2n+1P (a/2b).
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52 APPENDIX D. IRRATIONALITY OF π

Remember that P (a/2b) is a polynomial in a/2b with integer coefficients, and its
degree is less than 2n+1. Therefore, when we multiply through by the factor (2b)2n+1

we clear out all the 2b’s in the denominators, so the quantity on the right hand side
of the preceding equation is clearly an integer. Thus the left side must also be an
integer.

Now, recall that An was defined as the integral

An =

∫ 1

−1

(1− x2)n cos(rx) dx.

Clearly the leading factor of this integrand, (1− x2)n, is always between 0 and 1, so
an upper bound on the value of An is given by

An ≤
∫ 1

−1

cos(rx) dx.

This integral has some constant value C, though it doesn’t matter what it is, and this
is the upper bound on the value of An for any n. Now we showed previously that the
quantity

a2n+1An

n!

is always an integer (assuming π is rational). Since An is less than C, it follows that
this integer given by the above expression is less than

a2n+1C

n!
.

This is impossible, because n! increases faster than a2n+1, so there is some value of
n beyond which this ratio will be less than 1. This proves the quantity can’t be an
integer, so we have a contradiction. We are forced to conclude that π is not a rational
number.

By the way, the actual expressions for the first few An and the polynomials P (r)
and Q(r) are

A0 =
2

r
sin(r)

A1 =
4

r3
(1 · sin(r)− r · cos(r))

A2 =
16

r5

(
(3− r2) sin(r)− (3r) cos(r)

)

A3 =
96

r7

(
(15− 6r2) sin(r)− (15r − r3) cos(r)

)

A4 =
768

r9

(
(105− 45r2 + r4) sin(r)− (105r − 10r3) cos(r)

)

and so on.
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The double factorial of a positive integer n is a generalization of the usual factorial
n! defined by

n!! =





n · (n− 2) . . . 5 · 3 · 1 if n > 0 is odd

n · (n− 2) . . . 6 · 4 · 2 if n > 0 is even

1 n = −1, 0

For n = 0, 1, 2, . . . the first few values are 1, 1, 2, 3, 8, 15, 48, 105, 384, . . ..
The general expression for An is

An =
2n+1n!

a2n+1
(Pn(r) sin(r)−Qn(r) cos(r))

where the coefficient of r2k in the polynomial Pn is

(−1)k

(
n− k

k

)
(2n− 2k − 1)!!

(2k − 1)!!
.

For example, to determine the coefficient of r2 in A4 we have k = 1 and n = 4,
which gives

(−1)1

(
3

1

)
5!!

1!!
= (−1)(3)(15) = −45

Of course, the coefficients of odd powers of r in Pn are all zero, as are the coeffi-
cients of all even powers of r in Qn. The coefficient of r2k+1 in Qn is

(−1)k

(
n− k − 1

k

)
(2n− 2k − 1)!!

(2k + 1)!!
.

For example, the coefficient of r3 in A4 is found by setting k = 1 and n = 4 to give

(−1)1

(
2

1

)
5!!

3!!
= (−1)(2)(15/3) = −10.

D.2 Second Proof

Define a function fn(x) by

fn(x) =
xn(1− x)n

n!
.

Lemma D.1 This function has the following properties:

1. 0 < fn(x) < 1/n! for 0 < x < 1;

2. f
(k)
n (0) and f

(k)
n (1) are both integers;

where f
(k)
n (x) denotes the kth derivative of fn with respect to x.
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To see this, use the binomial theorem and notice that when the numerator is
multiplied out, the lowest power of x will be n and the highest power of x will be 2n.
Thus, the function can be written as

fn(x) =
1

n!

2n∑

k=n

ckx
k

where all of the coefficients are integers. In this representation it is clear that f
(k)
n (0) =

0 for k < n or k > 2n.
Considering the sum again, we see that

f (n)
n (x) =

1

n!
[n!cn + terms involving x]

f (n+1)
n (x) =

1

n!
[(n + 1)!cn+1 + terms involving x]

...

f (2n)
n (x) =

1

n!
[(2n)!c2n]

so this implies that f
(k)
n (0) is an integer for any k.

Moreover, since
f (k)

n (x) = (−1)kfn(k)(1− x)

and we have
fn(x) = fn(1− x)

so f
(k)
n (1) is an integer for any k.
One further fact to note is that

∣∣an

n!

∣∣ < ε for n sufficiently large, say n > 2a, and
any a.

Theorem D.1 π is irrational.

This approach is due to Legendre. We will prove that π2 is not rational, which implies
that π is not rational.

Assume that π2 is rational and let π2 = a/b for two integers a and b.
Define the function

G(x) = bn
[
π2nfn(x)− π2n−2f (2)

n (x) + · · ·+ (−1)nf (2n)
n (x)

]
.

Each of the factors

bnπ2n−2k = bn
(a

b

)n−k

= an−kbk

is an integer. We also know that f
(k)
n (0) and f

(k)
n (1) are integers as well. Therefore,

G(0) and G(1) are integers.
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Differentiating G twice we get

G′′(x) = bn
[
π2nf (2)

n (x)− π2n−2f (4)
n (x) + · · ·+ (−1)nf (2n)

n (x)
]
,

since the last term in the equation is the (2n+2)-th derivative of fn is 0. Now, adding
G(x) and G′′(x) we get

G(x) + π2G′′(x) = bnπ2n+2fn(x) = π2anfn(x).

Define a second function by

H(x) = G′(x) sin(πx)− πG(x) cos(πx).

Using the above equation and differentiating H, we have

H ′(x) = πG′(x) cos(πx) + G′′(x) sin(πx)− πG′(x) cos(πx) + π2G(x) sin(πx)

= [G′′(x) + π2G(x)] sin(πx)

= π2anfn(x) sin(πx)

By the Second Fundamental Theorem of Calculus

π2

∫ 1

0

anfn(x) sin(πx) dx = H(1)−H(0)

= G′(1) sin(π)− πG(1) cos(π)−G′(0) sin(0) + πG(0) cos(0)

= π[G(1) + G(0)]

Thus, the integral

π

∫ 1

0

anfn(x) sin(πx) dx

is an integer. But we also know that 0 < fn(x) < 1/n! for 0 < x < 1. Therefore,
estimating the above integral, we get

0 < πanfn(x) sin(πx) <
an

n!

for 0 < x < 1.
Therefore, we can estimate our integral to get

0 < π

∫ 1

0

anfn(x) sin(πx) dx <
an

n!
< 1.

Here we have used the fact that the last fraction approaches zero if n is sufficiently
large. But now we have a contradiction, because that integral is an integer. Since
there is no positive integer less than 1, our assumption that π2 was rational resulted
in a contradiction. Hence, π2 must be irrational.
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