Appendix D

Irrationality of π

D. 1 First Proof

For any integer n and real number r we can define a quantity A_{n} by the definite integral

$$
A_{n}=\int_{-1}^{1}\left(1-x^{2}\right)^{n} \cos (r x) d x
$$

If you integrate this by parts you find that the quantities A_{n} for $n=2,3,4, \ldots$ satisfy the recurrence relation

$$
A_{n}=\frac{2 n(2 n-1) A_{n-1}-4 n(n-1) A_{n-2}}{r^{2}}
$$

We can obviously express A_{n-1} and A_{n-2} in terms of lower members of the recurrence, and so on, all the way back to A_{0} and A_{1}. The result is

$$
A_{n}=\frac{n!}{r^{2 n+1}}[P(r) \sin (r)-Q(r) \cos (r)]
$$

where $P(r)$ and $Q(r)$ are polynomials in r of degree less than $2 n-1$ with integer coefficients.

Now assume that $\pi=a / b$, where a and b are integers, and let's set $r=\pi / 2$. Of course, this means that $r=a /(2 b)$. If we substitute this value into the preceding equation, and remember that $\sin (\pi / 2)=1$ and $\cos (\pi / 2)=0$, we have

$$
\left(\frac{a}{2 b}\right)^{2 n+1} A_{n}=n!P(a / 2 b) .
$$

Multiplying both sides by $(2 b)^{2 n+1}$ and dividing by $n!$ gives

$$
\frac{a^{2 n+1} A_{n}}{n!}=(2 b)^{2 n+1} P(a / 2 b)
$$

Remember that $P(a / 2 b)$ is a polynomial in $a / 2 b$ with integer coefficients, and its degree is less than $2 n+1$. Therefore, when we multiply through by the factor $(2 b)^{2 n+1}$ we clear out all the $2 b$'s in the denominators, so the quantity on the right hand side of the preceding equation is clearly an integer. Thus the left side must also be an integer.

Now, recall that A_{n} was defined as the integral

$$
A_{n}=\int_{-1}^{1}\left(1-x^{2}\right)^{n} \cos (r x) d x
$$

Clearly the leading factor of this integrand, $\left(1-x^{2}\right)^{n}$, is always between 0 and 1 , so an upper bound on the value of A_{n} is given by

$$
A_{n} \leq \int_{-1}^{1} \cos (r x) d x
$$

This integral has some constant value C, though it doesn't matter what it is, and this is the upper bound on the value of A_{n} for any n. Now we showed previously that the quantity

$$
\frac{a^{2 n+1} A_{n}}{n!}
$$

is always an integer (assuming π is rational). Since A_{n} is less than C, it follows that this integer given by the above expression is less than

$$
\frac{a^{2 n+1} C}{n!}
$$

This is impossible, because n ! increases faster than $a^{2 n+1}$, so there is some value of n beyond which this ratio will be less than 1 . This proves the quantity can't be an integer, so we have a contradiction. We are forced to conclude that π is not a rational number.

By the way, the actual expressions for the first few A_{n} and the polynomials $P(r)$ and $Q(r)$ are

$$
\begin{aligned}
& A_{0}=\frac{2}{r} \sin (r) \\
& A_{1}=\frac{4}{r^{3}}(1 \cdot \sin (r)-r \cdot \cos (r)) \\
& A_{2}=\frac{16}{r^{5}}\left(\left(3-r^{2}\right) \sin (r)-(3 r) \cos (r)\right) \\
& A_{3}=\frac{96}{r^{7}}\left(\left(15-6 r^{2}\right) \sin (r)-\left(15 r-r^{3}\right) \cos (r)\right) \\
& A_{4}=\frac{768}{r^{9}}\left(\left(105-45 r^{2}+r^{4}\right) \sin (r)-\left(105 r-10 r^{3}\right) \cos (r)\right)
\end{aligned}
$$

and so on.

The double factorial of a positive integer n is a generalization of the usual factorial n ! defined by

$$
n!!= \begin{cases}n \cdot(n-2) \ldots 5 \cdot 3 \cdot 1 & \text { if } n>0 \text { is odd } \\ n \cdot(n-2) \ldots 6 \cdot 4 \cdot 2 & \text { if } n>0 \text { is even } \\ 1 & n=-1,0\end{cases}
$$

For $n=0,1,2, \ldots$ the first few values are $1,1,2,3,8,15,48,105,384, \ldots$.
The general expression for A_{n} is

$$
A_{n}=\frac{2^{n+1} n!}{a^{2 n+1}}\left(P_{n}(r) \sin (r)-Q_{n}(r) \cos (r)\right)
$$

where the coefficient of $r^{2 k}$ in the polynomial P_{n} is

$$
(-1)^{k}\binom{n-k}{k} \frac{(2 n-2 k-1)!!}{(2 k-1)!!}
$$

For example, to determine the coefficient of r^{2} in A_{4} we have $k=1$ and $n=4$, which gives

$$
(-1)^{1}\binom{3}{1} \frac{5!!}{1!!}=(-1)(3)(15)=-45
$$

Of course, the coefficients of odd powers of r in P_{n} are all zero, as are the coefficients of all even powers of r in Q_{n}. The coefficient of $r^{2 k+1}$ in Q_{n} is

$$
(-1)^{k}\binom{n-k-1}{k} \frac{(2 n-2 k-1)!!}{(2 k+1)!!}
$$

For example, the coefficient of r^{3} in A_{4} is found by setting $k=1$ and $n=4$ to give

$$
(-1)^{1}\binom{2}{1} \frac{5!!}{3!!}=(-1)(2)(15 / 3)=-10
$$

D. 2 Second Proof

Define a function $f_{n}(x)$ by

$$
f_{n}(x)=\frac{x^{n}(1-x)^{n}}{n!}
$$

Lemma D. 1 This function has the following properties:

1. $0<f_{n}(x)<1 / n$! for $0<x<1$;
2. $f_{n}^{(k)}(0)$ and $f_{n}^{(k)}(1)$ are both integers;
where $f_{n}^{(k)}(x)$ denotes the $k^{\text {th }}$ derivative of f_{n} with respect to x.

To see this, use the binomial theorem and notice that when the numerator is multiplied out, the lowest power of x will be n and the highest power of x will be $2 n$. Thus, the function can be written as

$$
f_{n}(x)=\frac{1}{n!} \sum_{k=n}^{2 n} c_{k} x^{k}
$$

where all of the coefficients are integers. In this representation it is clear that $f_{n}^{(k)}(0)=$ 0 for $k<n$ or $k>2 n$.

Considering the sum again, we see that

$$
\begin{aligned}
f_{n}^{(n)}(x) & =\frac{1}{n!}\left[n!c_{n}+\text { terms involving } x\right] \\
f_{n}^{(n+1)}(x) & =\frac{1}{n!}\left[(n+1)!c_{n+1}+\text { terms involving } x\right] \\
& \vdots \\
f_{n}^{(2 n)}(x) & =\frac{1}{n!}\left[(2 n)!c_{2 n}\right]
\end{aligned}
$$

so this implies that $f_{n}^{(k)}(0)$ is an integer for any k.
Moreover, since

$$
f_{n}^{(k)}(x)=(-1)^{k} f_{n}(k)(1-x)
$$

and we have

$$
f_{n}(x)=f_{n}(1-x)
$$

so $f_{n}^{(k)}(1)$ is an integer for any k.
One further fact to note is that $\left|\frac{a^{n}}{n!}\right|<\epsilon$ for n sufficiently large, say $n>2 a$, and any a.

Theorem D. 1π is irrational.

This approach is due to Legendre. We will prove that π^{2} is not rational, which implies that π is not rational.

Assume that π^{2} is rational and let $\pi^{2}=a / b$ for two integers a and b.
Define the function

$$
G(x)=b^{n}\left[\pi^{2 n} f_{n}(x)-\pi^{2 n-2} f_{n}^{(2)}(x)+\cdots+(-1)^{n} f_{n}^{(2 n)}(x)\right]
$$

Each of the factors

$$
b^{n} \pi^{2 n-2 k}=b^{n}\left(\frac{a}{b}\right)^{n-k}=a^{n-k} b^{k}
$$

is an integer. We also know that $f_{n}^{(k)}(0)$ and $f_{n}^{(k)}(1)$ are integers as well. Therefore, $G(0)$ and $G(1)$ are integers.

Differentiating G twice we get

$$
G^{\prime \prime}(x)=b^{n}\left[\pi^{2 n} f_{n}^{(2)}(x)-\pi^{2 n-2} f_{n}^{(4)}(x)+\cdots+(-1)^{n} f_{n}^{(2 n)}(x)\right],
$$

since the last term in the equation is the $(2 n+2)$-th derivative of f_{n} is 0 . Now, adding $G(x)$ and $G^{\prime \prime}(x)$ we get

$$
G(x)+\pi^{2} G^{\prime \prime}(x)=b^{n} \pi^{2 n+2} f_{n}(x)=\pi^{2} a^{n} f_{n}(x)
$$

Define a second function by

$$
H(x)=G^{\prime}(x) \sin (\pi x)-\pi G(x) \cos (\pi x)
$$

Using the above equation and differentiating H, we have

$$
\begin{aligned}
H^{\prime}(x) & =\pi G^{\prime}(x) \cos (\pi x)+G^{\prime \prime}(x) \sin (\pi x)-\pi G^{\prime}(x) \cos (\pi x)+\pi^{2} G(x) \sin (\pi x) \\
& =\left[G^{\prime \prime}(x)+\pi^{2} G(x)\right] \sin (\pi x) \\
& =\pi^{2} a^{n} f_{n}(x) \sin (\pi x)
\end{aligned}
$$

By the Second Fundamental Theorem of Calculus

$$
\begin{aligned}
\pi^{2} \int_{0}^{1} a^{n} f_{n}(x) \sin (\pi x) d x & =H(1)-H(0) \\
& =G^{\prime}(1) \sin (\pi)-\pi G(1) \cos (\pi)-G^{\prime}(0) \sin (0)+\pi G(0) \cos (0) \\
& =\pi[G(1)+G(0)]
\end{aligned}
$$

Thus, the integral

$$
\pi \int_{0}^{1} a^{n} f_{n}(x) \sin (\pi x) d x
$$

is an integer. But we also know that $0<f_{n}(x)<1 / n$! for $0<x<1$. Therefore, estimating the above integral, we get

$$
0<\pi a^{n} f_{n}(x) \sin (\pi x)<\frac{a^{n}}{n!}
$$

for $0<x<1$.
Therefore, we can estimate our integral to get

$$
0<\pi \int_{0}^{1} a^{n} f_{n}(x) \sin (\pi x) d x<\frac{a^{n}}{n!}<1
$$

Here we have used the fact that the last fraction approaches zero if n is sufficiently large. But now we have a contradiction, because that integral is an integer. Since there is no positive integer less than 1 , our assumption that π^{2} was rational resulted in a contradiction. Hence, π^{2} must be irrational.

