
Appendix H

The Lagrange Inversion Theorem

In mathematical analysis, the Lagrange Inversion theorem gives the Taylor series
expansion of the inverse function of an analytic function. Suppose that w and z is
implicitly related by an equation of the form

f(w) = z

where f is analytic at a point a and f ′(a) 6= 0. Then it is possible to invert or solve
the equation for w

w = g(z)

where g is analytic at the point b = f(a).
When this is done to derive the series expansion for g, it is also called reversion

of series. The series expansion of g is given by

g(z) = a +

∞
∑

n=1

dn−1

(dw)n−1

(

w − a

f(w) − b

)

n
∣

∣

∣

∣

w=a

(z − b)n

n!
.

This formula can be used to find the Taylor series of the Lambert W function (by
setting f(w) = wew and a = b = 0).

In this case we have to compute the (n − 1)st derivative of (w/f(w))n at w = 0.
Since f(w) = wew, we must compute the (n − 1)st derivative of e−nw at w = 0. The
main thing here is to keep track of the signs.

dn−1e−nw

dwn−1
= (−n)n−1e−nw ⇒

dne−nw

dwn

∣

∣

∣

∣

w=0

= (−n)n−1.

Therefore, the series expansion for the Lambert W function is as reported:

W (x) =
∑

n≥1

(−n)n−1

n!
xn.

The formula is also valid for formal power series and can be generalized in various
ways. If it can be formulated for functions of several variables, it can be extended
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to provide a ready formula for F (g(z)) for any analytic function F , and it can be
generalized to the case f ′(a) = 0, where the inverse g is a multi-valued function.

The theorem was proved by Lagrange and generalized by Bürmann, both in the
late 18th century. There is a straightforward derivation using complex analysis and
contour integration (the complex formal power series version is clearly a consequence
of knowing the formula for polynomials, so the theory of analytic functions may be
applied).

Series reversion is the computation of the coefficients of the inverse function given
those of the forward function. For a function expressed in a series with no constant
term (i.e., a0 = 0) as

y = a1x + a2x
2 + a3x

3 + . . . ,

the series expansion of the inverse series is given by

x = A1y + A2y
2 + A3y

3 + . . . .

By plugging this second series into the first, the following equation is obtained

y = a1A1y+(a2A
2

1+a1A2)y
2+(a3A

3

1+2a2A1A2+a1A3)y
3+(3a3A

2

1A2+a2A
2

2+a2A1A3)y
4+. . . ,

Equating coefficients then gives

A1 = a−1

1

A2 = −a−3

1 a2

A3 = a−5

1 (2a2

2 − a1a3)

A4 = a−7

1 (5a1a2a3 − a2

1a4 − 5a3

2)

A5 = a−9

1 (6a2

1a2a4 + 3a2

1a
2

3 + 14a4

2 − a3

1a5 − 21a1a
2

2a3)

A6 = a−11

1 (7a3

1a2a5 + 7a3

1a3a4 + 84a1a
3

2a3 − a4

1a6 − 28a2

1a2a
2

3 − 42a5

2 − 28a2

1a
2

2a4)

A7 = a−13

1 (8a4

1a2a6 + 8a4

1a3a5 + 4a4

1a
2

4 + 120a2

1a
3

2a4 + 180a2

1a
2

2a
2

3 + 132a6

2 − a4

1a7−

36a3

1a
2

2a5 − 72a3

1a2a3a4 − 12a3

1a
3

3 − 330a1a
4

2a3)

As an example we know that

y = ex − 1 =

∞
∑

n=1

xn

n!
.
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Thus, an = 1/n!. We will use Series Reversion to find the series for x = ln y.

A1 = a−1

1 = 1

A2 = −a−3

1 a2

= −
1

2
A3 = a−5

1 (2a2

2 − a1a3)

= 2 ×
1

4
−

1

6
=

1

3
A4 = a−7

1 (5a1a2a3 − a2

1a4 − 5a3

2)

= 5 ×
1

2
×

1

6
−

1

24
− 5 ×

1

8
= −

1

4
A5 = a−9

1 (6a2

1a2a4 + 3a2

1a
2

3 + 14a4

2 − a3

1a5 − 21a1a
2

2a3)

= 6 ×
1

2
×

1

24
+ 3 ×

1

36
+ 14 ×

1

16
−

1

120
− 21 ×

1

4
×

1

6
=

1

5

and so forth. Note that this does give us the power series for ln(1 + x), which you
will remember is

ln(1 + x) =
∞

∑

n=1

(−1)n+1
xn

n
.
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