
Chapter 3

The Real Numbers, R

3.1 Notation and Definitions

We will NOT define set, but will accept the common understanding for sets. Let A
and B be sets.

Definition 3.1 The union of A and B is the collection of all elements that belong
to A or to B; A ∪B = {x | x ∈ A or x ∈ B}.

The union of a finite number of sets is defined as:

n⋃
i=1

Ai = {x | x ∈ Ai for some i = 1, 2, 3, . . . , n}.

An arbitrary union of sets indexed by some set Λ is defined similarly:

⋃

λ∈Λ

Aλ = {x | x ∈ Aλ for some λ ∈ Λ}.

Definition 3.2 The intersection of A and B is the collection of all elements that
belong to both A and to B; A ∩B = {x | x ∈ A and x ∈ B}.

The intersection of a finite number of sets is defined as:

n⋂
i=1

Ai = {x | x ∈ Ai for all i = 1, 2, 3, . . . , n}.

An arbitrary intersection of sets indexed by some set Λ is defined similarly:

⋂

λ∈Λ

Aλ = {x | x ∈ Aλ for all λ ∈ Λ}.
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36 CHAPTER 3. THE REAL NUMBERS, R

Definition 3.3 The product, or Cartesian product, of A and B is the collection
of all ordered pairs, (a, b), so that the first coordinate belongs to A and the second
coordinate belongs to B; A×B = {(a, b) | a ∈ Aandb ∈ B}.
The product of a finite number of sets is defined as:

n∏
i=1

Ai = {(x1, x2, . . . , xn) | xi ∈ Ai for all i = 1, 2, 3, . . . , n}.

3.2 Infinities

It was not until the 19th Century that mathematicians discovered that infinity comes
in different sizes. Georg Cantor (1845 to 1918) defined the following.

Definition 3.4 Any set which can be put into one-one correspondence with N is
called denumerable. A set is countable if it is finite or denumerable.

Example 3.1 The set of all ordered pairs, (a1, b1) with ai, bi ∈ N is countable. The
proof of this is the usual Cantor diagonalization argument. List all ordered pairs and
follow a path like the following:

(0, 0) → (0, 1) (0, 2) → (0, 3) . . .
↙ ↗ ↙

(1, 0) (1, 1) (1, 2) (1, 3)
. . .

↓ ↗ ↙
(2, 0) (2, 1)

. . .

↙
(3, 0)

. . .

↓
...

The resulting mapping is like this: 0 ↔ (0, 0), 1 ↔ (0, 1), 2 ↔ (1, 0), 3 ↔ (2, 0),
4 ↔ (1, 1), 5 ↔ (0, 2), . . .. Clearly this mapping will cover all such ordered pairs.

Lemma 3.1 Any subset of a countable set is countable.

You can use the above countable set and the following mapping to show that the
set of all integers are countable:

0 ↔ (0, 0)
1 ↔ (1, 0)

−1 ↔ (1, 1)
2 ↔ (2, 0)

−2 ↔ (2, 1)
3 ↔ (3, 0)
...

...
...
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3.2. INFINITIES 37

Lemma 3.2 The product of two countable sets is countable.

The proof of this is exactly what we did in the example above.

Lemma 3.3 The product of a finite number of countable sets is countable.

Using this we can show that the set of rationals is countable. The rationals are
the set of all fractions a/b where a, b ∈ Z and b > 0. This can be mapped onto the
subset of ordered triples of natural numbers (a, b, c) such that b > 0, a and b are
coprime, and c ∈ {0, 1} so that c = 0 if a/b ≥ 0 and c = 1 otherwise.

0 7→ (0, 1, 0)
1 7→ (1, 1, 0)

−1 7→ (1, 1, 1)
1
2
7→ (1, 2, 0)

−1
2
7→ (1, 2, 1)

2 7→ (2, 1, 0)
−2 7→ (2, 1, 1)

1
3
7→ (1, 3, 0)

−1
3
7→ (1, 3, 1)

3 7→ (3, 1, 0)
−3 7→ (3, 1, 1)

1
4
7→ (1, 4, 0)

−1
4
7→ (1, 4, 1)

2
3
7→ (2, 3, 0)

−2
3
7→ (2, 3, 1)

3
2
7→ (3, 2, 0)

−3
2
7→ (3, 2, 1)

4 7→ (4, 1, 0)
−4 7→ (4, 1, 1)

. . .

The amazing insight achieved by Cantor is the following result.

Theorem 3.1 (Cantor, 1874) The set of real numbers R is not countable.

Proof: We will show that the set of reals in the interval (0, 1) is not countable. From
our lemma above that will make the reals uncountable, since if they were countable,
then (0, 1) would also be countable.

Assume that (0, 1) is countable. Then we could write down all the decimal ex-
pansions of the reals in (0, 1) in a list:

0.a11a12a13a14a15 . . .
0.a21a22a23a24a25 . . .
0.a31a32a33a34a35 . . .
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38 CHAPTER 3. THE REAL NUMBERS, R

0.a41a42a43a44a45 . . .
...

Now define a decimal x = x1x2x3x4 . . . by

x1 6= a11 (or 9),

x2 6= a22 (or 9),

x3 6= a33 (or 9),

x4 6= a44 (or 9),

and so forth. Then the decimal expansion of xdoes not end in recurring 9’s and it
differs from the nth element of the list in the nth decimal place. Hence it represents
an element of the interval (0, 1) which is not in the list and so we do not have a list
of the reals in (0, 1).

Lemma 3.4 A countable union of countable sets is countable.

One of the amazing consequences of Cantor’s work is that it proves the existence
of a class of real numbers which previously had been very difficult to investigate.

Recall that a real number is called algebraic if it is a root of a polynomial with
rational (or integer) coefficients. Other real numbers are called transcendental.

Theorem 3.2 (Cantor) The set of algebraic numbers is countable. Hence there are
uncountably many transcendental numbers.

Proof: Since a polynomial of degree n with rational coefficients has n+1 coefficients,
such polynomials can be put into one-to-one correspondence with Q × Q × · · · × Q
(n+1 times). This is countable by Lemma 3.3 and so there are only countably many
such polynomials. Such a polynomial can have at most n roots and so there are only
countably many such roots. Finally, the set of all such roots is the union over n of
the roots of polynomials of degree n and so there are countably many of these.

Many mathematicians found this proof of the existence of transcendentals unsat-
isfactory. Notice that it does not construct a transcendental number, it only shows
that they must exist. In 1851, Liouville was the first to provide the existence of a
transcendental. He prove that the number 0.110001000 . . . (with a 1 in the n! place
and 0 elsewhere is transcendental. In 1873, Hermite proved that e is transcendental.
In 1882, Lindemann proved that π is transcendental. In 1900, Hilbert published a
famous set of problems to challenge mathematicians in the new century. The 23rd
problem was to prove that if a is algebraic (a 6= 0, 1) and x is irrational then ax is
transcendental. This was proved by Gelfond in 1934.
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3.3. PROOFS BY INDUCTION 39

3.3 Proofs by Induction

We will need this method of proof later, so now is a good time to introduce this
process. One of the most basic properties of the natural numbers, N, is the principle of
mathematical induction. The first known proof by mathematical induction appears in
Francesco Maurolico’s Arithmeticorum libri fuo (1575). Maurolico used the technique
to prove that the sum of the first n odd integers is n2.

Suppose P (x) means that property P holds for the number x.
Principle of Mathematical Induction A property P holds true for all natural
numbers n provided that

1. The basis : P (1) is true, i.e., the statement holds for n = 11.

2. The inductive step: If P (k) is true for k/ge1, then P (k + 1) is true.

One common variant on the inductive step is if the property holds for all k < n,
then it also holds for n. Another version allows us to start at any finite number m
and prove that it holds for all integers greater than m, i.e., you do not have to start
at 1.

Example 3.2 Show that 1 + · · ·+ n = n(n+1)
2

.
First, we need to check this for n = 1. The formula reads: 1 = 1·2

2
= 1, which is true.

Thus, our basis is true. Now we will assume that the statement is true for some k > 1

1 + · · ·+ k =
k∑

i=1

i =
k(k + 1)

2
,

and we need to prove, then, that the statement is true for k + 1.

k+1∑
i=1

i = 1 + 2 + 3 + · · ·+ k + (k + 1)

= [1 + 2 + 3 + · · ·+ k] + (k + 1)

=
k(k + 1)

2
+ (k + 1)

=
k(k + 1) + 2(k + 1)

2
=

(k + 1)(k + 2)

2

This completes the proof.

1Some texts will start with n = 0.
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40 CHAPTER 3. THE REAL NUMBERS, R

3.4 Axioms for the Real Numbers

The real numbers R have some rather unexpected properties. In fact, there are many
things that it is difficult to prove rigorously. For example, how do we know that

√
2

exists? In other words how can we be sure that there is some real number whose
square is 2? Also, it is easy to convince yourself that 2 + 3 = 3 + 2. Can you be so
sure about

√
2 +

√
3 =

√
3 +

√
2 or e + π = π + e, if you can really write down what

those numbers are?
Our intuition works pretty well about what should be true for N or Z or even for

Q. Things don’t get hard until we are forced to admit the existence of irrationals.
There are constructive methods for making the full set R from Q. The first rigorous
construction was given by Richard Dedekind in 1872.

He developed the idea first in 1858 though he did not publish it until 1872. This
is what he wrote at the beginning of the article.

As professor in the Polytechnic School in Zürich I found my-
self for the first time obliged to lecture upon the ideas of the
differential calculus and felt more keenly than ever before the
lack of a really scientific foundation for arithmetic. In dis-
cussing the notion of the approach of a variable magnitude
to a fixed limiting value, and especially in proving the theo-
rem that every magnitude which grows continuously but not
beyond all limits, must certainly approach a limiting value,
I had recourse to geometric evidences. . . .This feeling of
dissatisfaction was so overpowering that I made the fixed re-
solve to keep mediating on the question till I should find a
purely arithmetic and perfectly rigorous foundation for the
principles of infinitesimal analysis.

He defined a real number to be a pair (L,R) of sets of rationals which have the
following properties.

• Every rational is in exactly one of the sets.

• Every rational in L is less than every rational in R.

Such a pair is called a Dedekind cut (Schnitt in German). You can think of it as
defining a real number which is the least upper bound of the “left-hand set” L and
also the greatest lower bound of the “right-hand set” R. If the cut defines a rational
number then this may be in either of the two sets. It is a long task to define the
arithmetic operations and order relation on such cuts and to verify that they do then
satisfy the axioms for the reals — including even the Completeness Axiom. Richard
Dedekind was one of the last research students of Gauss. His arithmetization of anal-
ysis was his most important contribution to mathematics. It was not enthusiastically
received by leading mathematicians of his day.
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3.4. AXIOMS FOR THE REAL NUMBERS 41

For the moment we will simply give a set of axioms for the reals and leave it to
intuition that there is something that satisfies these axioms.

We start with a set, which we will call R and a pair +, · of binary operations.

3.4.1 The Axioms

These are divided into three groups.

I The algebraic axioms
R is a field under + and ·. This means that (R, +) and (R, ·) are both abelian
groups and the distributive law (a + b)c = ab + ac holds.

(a) For all a, b ∈ R, a + b ∈ R.

(b) For all a, b ∈ R, a + b = b + a

(c) For all a, b, c ∈ R, (a + b) + c = a + (b + c).

(d) For all a ∈ R, a + 0 = 0 + a = a.

(e) For all a ∈ R there is an element −a ∈ R so that a+(−a) = (−a)+a = 0.

(f) For all a, b ∈ R, a · b ∈ R.

(g) For all a, b ∈ R, a · b = b · a
(h) For all a, b, c ∈ R, (a · b) · c = a · (b · c).
(i) For all a ∈ R, a · 1 = 1 · a = a.

(j) For all a ∈ R, a 6= 0 there is an element b ∈ R so that a · b = b · a = 1.

(k) For all a, b, c ∈ R, a · (b + c) = a · b + a · c.
II The order axioms2

There is a relation > on R. (That is, given any pair a, b ∈ R then a > b is either
true or false). It satisfies:

(a) Trichotomy: For any a ∈ R exactly one of a > 0, a = 0, 0 > a is true.

(b) If a, b > 0 then a + b > 0 and a · b > 0.

(c) If a > b then a + c > b + c for any c ∈ R.

III The Completeness Axiom3

If a non-empty set A has an upper bound, it has a least upper bound.

Examples: The field Q of rationals is an ordered field. While the field C of complex
numbers is not an ordered field under any ordering. To see this suppose i > 0. Then
−1 = i2 > 0 and adding 1 to both sides gives 0 > 1. But if we square both sides

2Something satisfying axioms I and II is called an ordered field.
3Something which satisfies Axioms I, II and III is called a complete ordered field.

MATH 6101-090 Fall 2006



42 CHAPTER 3. THE REAL NUMBERS, R

instead we have (−1)2 = 1 > 0 and so we get a contradiction. A similar argument
starting with i < 0 also gives a contradiction.

These axioms are used to show more properties of the reals. For example, the
ordering > on R is transitive. That is, if a > b and b > c then a > c. The proof is
straightforward:

a > b ⇔ a− b > b− b = 0 by Axiom II c)

a > c ⇔ a− c > c− c = 0

Hence (a− b) + (a− c) > 0 and so a− c > 0 and we have a > c.

Definition 3.5 An upper bound of a non-empty subset A of R is an element b ∈ R
with b ≥ a for all a ∈ A. An element M ∈ R is a least upper bound or supremum
of A if M is an upper bound of A and if b is an upper bound of A then b ≥ M . That
is, if M is a least upper bound of A then there is a b ∈ R so that for all x ∈ A if
b ≥ x then b ≥ M . M is sometimes written as lub{A} or inf{A}.

A lower bound of a non-empty subset A of R is an element d ∈ R with d ≤ a for
all a ∈ A. An element m ∈ R is a greatest lower bound or infimum of A if m is
a lower bound of A and if d is a lower bound of A then m ≥ d.

Lemma 3.5 A subset A which has a lower bound has a greatest lower bound.

Proof: Let B = {x ∈ R | −x ∈ A}. Then B is bounded above by − lub{A} and
so has a least upper bound. Call it b. It is then easy to check that −b is a greatest
lower bound of A.

Lemma 3.6 (The Archimedean property of R) If a > 0 in R, then for some
n ∈ N it is true that 1/n < a.

Proof: This is equivalent to proving that for any x ∈ R there is an n ∈ N so
that n > x. This statement is equivalent to saying that N is not bounded above.
This seems like a very obvious fact, but we will prove it rigorously from the axioms.
Suppose N were bounded above. Then it would have a least upper bound, M . So
then M − 1 is not an upper bound and so there is an integer n > M − 1. But then
n + 1 > M contradicting the fact that M is an upper bound.

Lemma 3.7 Between any two real numbers is an rational number.

Proof: Let a, b be real numbers and assume a < b. Choose n so that 1/n < b − a.
Then look at multiples of 1/n. Since these are unbounded, we may choose the first
such multiple with m/n > a. We claim that m/n < b. If not, then since (m−1)/n < a
and m/n > b we would have 1/n > b− a.
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3.5. INTERVALS AND DECIMAL EXPANSION 43

Definition 3.6 A set A with the property that an element of A lies in every interval
(a, b) of R is called dense in R.

We have just proved that the rationals are dense in the reals.
We can now answer the question we stated earlier.

Lemma 3.8 The real number
√

2 exists.

Proof: We will get
√

2 as the least upper bound of the set A = r ∈ Q | r2 < 2. We
know that A is bounded above at least by 2. Thus its least upper bound b exists by
Axiom III. Now we have to prove that b2 < 2 and b2 > 2 both lead to contradictions,
leaving only b2 = 2 (by the Trichotomy rule).

So suppose that b2 > 2. Look at (b − 1/n)2 = b2 − 2b/n + 1/n2 > b2 − 2b/n.
When is this greater than 2? Now b2 − 2b/n > 2 if and only if b2 − 2 > 2b/n or
1/n < (b2 − 2)/2b and we can find such an n by the Archmedean property. Thus
b− 1/n is an upper bound, contradicting the assumption that b was the least upper
bound.

Similarly, if b2 < 2 then (b + 1/n)2 = b2 + 2b/n + 1/n2 > b2 + 2b/n. Can this be
less than 2? Yes, when b2 + 2b/n < 2 which happens if and only if 2 − b2 > 2b/n or
1/n < (2− b2)/2b and we can find an n satisfying this, leading to the conclusion that
b would not be an upper bound.

3.5 Intervals and Decimal Expansion

In school algebra we usually define real numbers as those numbers that can be repre-
sented by finite or infinite decimals. When the student gets to geometry he is told that
the real numbers are those that are in a one-to-one correspondence with the points on
a line. What we have seen is that neither one of these descriptions is really complete.
There is a lot more to real numbers than we would probably want to tell our students.
We need to know more about these numbers, however, in order not to mislead the
students when they ask questions about numbers, especially real numbers. We have
just seen that we can define the real numbers in terms of least upper bounds and we
hinted at a way in which Dedekind cuts can be used to define real numbers. Another
method — and one more appropriate to high school mathematics — is describe the
rational numbers in a particular way and then use the Nested Interval Property of
the reals to obtain real numbers as decimals.

The way that we usually introduce the number line or real line in school is to
start with a straight line and select two points on that line that we will let represent
the integers 0 and 1.4

4We usually take 0 to be the left hand point and 1 the right hand point. Do we have to make
this choice?
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44 CHAPTER 3. THE REAL NUMBERS, R

Now, you can represent the counting numbers 2, 3, 4, . . . by laying off the length
from 0 to 1 successively to the right of 1. Likewise, we can represent the negative
integers as lengths to the left of 0.

We know how to represent fractions (rational numbers) by a geometric construc-
tion, so we can represent any rational number on the number line as a length. In
fact if we write the rational number x = a

b
as an integral part and a fractional part:

x = a
b

= q + r
b

where q is the greatest integer in x (q = bxc) and 0 < r < b, then r
b

is between 0 and 1, and we can think of each integer interval as just a translation of
the interval between 0 and 1.

We also know how to construct a number of irrational numbers, as well, such as√
2 among others. Each of these numbers that we know how to represent as a length

then we know where to put that irrational number on the number line. That doesn’t
represent all of the real numbers though. How can we represent each real number on
the number line?

3.5.1 Intervals

Definition 3.7 An interval of numbers is a set containing all numbers between two
given numbers together with one, both, or neither of the two numbers.

As we will see later as interval is called open if it contains neither of its endpoints and
closed if it contains both of its endpoints. The length of an interval with endpoints a
and b is |b− a|.

3.5.2 Decimals

Definition 3.8 If a nonnegative real number x can be expressed as a (finite) sum of
the form

x = D+
d1

101
+

d2

102
+

d3

103
+· · ·+ dk

10k
= D+d1 ·10−1+d2 ·10−2+d3 ·10−3+· · ·+dk ·10−k,

where D and di, i = 1, . . . , k are nonnegative integers and 0 ≤ di ≤ 0 for i =
1, 2, . . . , k, then D.d1d2d3 . . . dk is the finite decimal representation of x.

We say that D is the integer part, .d1d2 . . . dk is the decimal part and di is the ith
decimal place of x. The integer part is the greatest integer less than or equal to x,
D = bxc.

If x is a negative number and there is a finite decimal D.d1d2 . . . dk representing
−x, then we write −D.d1d2 . . . dk for the finite decimal representing x. In this case,
bxc = −D − 1.

Of course, there are rational numbers that do not have a finite decimal represen-
tation, such as 1/3. To deal with these we need another definition.
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Definition 3.9 An infinite decimal representation of a real number x is an infinite
sequence d = {D, d1, d2, . . . , dn, . . .} of integers such that 0 ≤ dk ≤ 9 for all k ∈ N.
Every finite decimal can be regarded as an infinite decimal by identifying it with the
infinite sequence d = {D, d1, d2, . . . , dk, 0, 0, . . .}.

Think of the decimal for
√

2. If only the first two decimal places are known, then
we know that

√
2 lies in the interval [1.41, 1.42], an interval of length 10−2. Each

succeeding decimal place places
√

2 in an interval of length 1
10

the preceding interval.

To 5 decimal places we know that
√

2 = 1.41459 which places it in the interval
[1.41459, 1.41460], an interval of length 10−5. Now, this interval is contained in the
previous interval.

Definition 3.10 An interval I is nested in another interval J if and only if I ⊂ J .
A sequence {Ik} of intervals is called a nested sequence if Ik+1 ⊂ Ik for all k.

Nested Interval Property: In the real line for any sequence of finite closed nested
intervals there is at least one point that belongs to all of them.

This property is equivalent to the Least Upper Bound axiom.
Consider the nested sequence of closed intervals:

[1.4, 1.5], [1.41, 1.42], [1.414, 1.415], . . . , [dk, dk + 10−k], . . .

where dk is the rational number whose finite decimal representation consists of the
first k places of

√
2. The Nested Interval Property asserts that there is at least one

point that belongs to all of these intervals. Because the length of the kth interval is
10−k, at most one point can belong to all of these intervals. (If there were two points
in the intersection, the distance between then would be more than 10−m for some m,
so they could both be in all the [dk, dk +10−k].) This unique point is the real number√

2.

Lemma 3.9 If {Ik} is a nested sequence of closed intervals with rational endpoints
whose length decreases to 0, then there is one and only one point that belongs to all
of the intervals in the sequence.

This unique point is the real number determined by the sequence {Ik}.
Lemma 3.10 Real numbers can be defined by decimal expansions.

Proof: Given the decimal expansion 0.a1a2a3 . . . consider the set of rational num-
bers

{0.a1, 0.a1a2, 0.a1a2a3, . . .} = {a1

10
,
10a1 + a2

100
,
100a1 + 10a2 + a3

1000
, . . .}.

This is bounded above by (a1 + 1)/10 or by (10a1 + a2 + 1)/100 and so it has a least
upper bound. This is the real number defined by the decimal expansion.
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3.6 Open and Closed Sets

Definition 3.11 We say that U ⊆ R is open if for all x ∈ U , there is ε > 0 such
that (x− ε, x + ε) ⊂ U . That is, if |x− y| < ε then y ∈ U .

Intuitively, if U is open and x ∈ U , then every y that is suffciently close to x is
also in U .

For example, if a < b, then (a, b) is open. To show this, suppose that x ∈ (a, b),
and let ε = min(x−a, b−x). So if |x−y| < ε, then y ∈ (a, b), so (x−ε, x+ε) ⊂ (a, b).

It is also easy to see that R is open, and that (−infty, a) and (a; +∞) are open
for any a ∈ R.

The empty set ∅ is also open: since ∅ has no elements, it is then clearly true that
every element of ∅ has a neighborhood contained in ∅.

Lemma 3.11 (An arbitrary union of open sets is open) If U and V are open
subsets of R, then U ∪ V is open. More generally, if A is a set (it can even be an
uncountable set) and Uλ ⊂ R is open for each λ ∈ A, then W =

⋃
λ∈A Uλ is open.

Proof: We prove the more general case. Suppose x ∈ W =
⋃

λ∈A Uλ. Then there is
a λ ∈ A such that x ∈ Uλ. Since Uλ is open, there is an ε > 0 such that (x−ε, x+ε) ⊂
Ui ⊂ W .

This proof does not use the fact that A is a finite set. In fact, A can be infinite, or
even uncountable — an arbitrary union of open sets is open.

For example (n, n + 1) is open for all n ∈ Z. Thus

R \ Z =
⋃

n∈Z
(n, n + 1)

is open.

Lemma 3.12 (A finite intersection of open sets is open) Suppose U and V are
open subsets of R. Then U ∩ V is open. More generally, if U1, U2, . . . , Un are open
sets, then U1 ∩ · · · ∩ Un is open.

Proof: Suppose x ∈ U ∩ V . Since U and V are open there are ε1 and ε2 such
that (x − ε1, x + ε1) ⊂ U and (x − ε2, x + ε2) ⊂ V . Let ε = min(ε1, ε2). Then
(x− ε, x + ε) ⊂ U ∩ V .

The proof that U1 ∩ · · · ∩ Un is open follows similarly.

It is not true that an arbitrary intersection of open sets is open. For example,
let Un be the interval (− 1

n
, 1

n
) for n = 1, 2, . . .. Then

⋂∞
n−1 Un = {0} and {0} is not

open. The result is that a finite intersection of open sets is open.

Definition 3.12 A subset F ⊂ R is closed if R \ F is open.
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Since R and ∅ are open, they are also both closed. If a < b, then [a, b], (−∞, a]
and [b,∞) are closed.

Lemma 3.13 (An arbitrary intersection of closed sets is closed) If F and G
are open subsets of R, then F ∩G is closed. More generally, if A is a set — it can even
be an uncountable set — and Fλ ⊂ R is closed for each λ ∈ A, then W =

⋂
λ∈A Fλ is

closed.

Proof: R−W = R−⋂
λ∈A Fλ =

⋃
λ∈A(R\Fλ). Since each R\Fλ is open,

⋃
λ∈A(R\Fλ)

is open by Lemma 3.11. Thus, W is closed.

Lemma 3.14 (A finite union of closed sets is closed) Suppose F and G are closed
subsets of R. Then F ∩G is closed. More generally, if F1, F2, . . . , Fn are closed sets,
then F1 ∪ · · · ∪ Fn is closed.

Proof: Since F and G are closed, R \ F and R \G are open. By Lemma 3.12

R \ (F ∪G) = (R \ F ) ∩ (R \G)

is open, hence F ∪G is closed. The proof that F1 ∪ · · · ∪ Fn is closed is similar.

Lemma 3.15 Suppose F ⊂ R is closed. If F is bounded above and β = lub{F}, then
β ∈ F . Similarly, if F bounded below and α = glb{F}, then α ∈ F .

Proof: Suppose instead that β /∈ F . Since R \ F is open, there is ε > 0 such that
(β−ε, β+ε) ⊂ R\F , or |x−β| < ε which implies that x /∈ F . But then if z ∈ (β−ε, β)
then z is also an upper bound for F , contradicting the fact that β is the least upper
bound.

The proof that the greatest lower bound α ∈ F is similar.
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