
Chapter 7

Series Examples

We have lots of theorems about convergence and divergence of series. How do we use
them? Which one should be used when? Why all the fuss?

First, we have a result that tells us how closely related the Ratio Test and the
Root Test actually are.

Theorem 7.1 Let {an} be any sequence of nonzero real numbers, then

lim inf

∣∣∣∣
an+1

an

∣∣∣∣ ≤ lim inf |an|1/n ≤ lim sup |an|1/n ≤ lim sup

∣∣∣∣
an+1

an

∣∣∣∣

Corollary 7.1 If lim |an+1

an
| exists and equals L, then lim |an|1/n exists and equals L.

Example 7.1 Consider the series

∞∑
n=2

(
−1

3

)n

=
1

9
− 1

27
+

1

81
− 1

243
+ · · ·

This is a geometric series. It has the form that we desire,
∑∞

n=0 arn if we factor out
1
9
.

∞∑
n=2

(
−1

3

)n

=
1

9

∞∑
n=0

(
−1

3

)n

=
1

9

1

1−
(
−1

3

) =
1

12
.

This series could also be shown to converge by the Comparison Test, since
∑

1/3n

converges by either the Ratio Test or the Root Test. In fact, if an = (−1/3)n then

lim

∣∣∣∣
an+1

an

∣∣∣∣ = lim sup |an|1/n =
1

3
< 1.

Of course none of these three tests gives us the actual sum as does the first procedure.
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Example 7.2 Consider the series
∑ n

n2 + 3
.

If an =
n

n2 + 3
, then

an+1

an

=
n + 1

(n + 1)2 + 3
· n2 + 3

n
=

n + 1

n

n3 + 3

n2 + 2n + 4

Hence, lim |an+1/an| = 1. The Ratio Test will give us no information and you can
check, but the Root Test will yield no information either. Before trying the Compar-
ison Test, we should have some feeling as to whether it should converge or diverge.
Since an is about 1/n for n large, we expect it to diverge. That gives us some indi-
cation of what to try to do.

n

n2 + 3
≥ n

n2 + 3n3
=

n

4n2
=

1

4n
.

Now, since
∑

1/n diverges,
∑

1/4n will diverge, so by the Comparison Test, our
series diverges.

Example 7.3 Consider the series

∑ 1

n2 + 1

Neither the Ratio Test nor the Root Test gives any information. The Comparison

Test works here because
∑

1/n2 converges and
1

n2 + 1
≤ 1

n2
, so our series converges.

Example 7.4 Consider the series

∞∑
n=2

1

n2 − 1

This time we still think that this converges because it looks like
∑

1/n2. However,
we cannot use the Comparison Test because

1

n2
≤ 1

n2 − 1

which is the wrong direction for using the Comparison Test. This is where the Limit

Comparison Test comes into play. If an =
1

n2 − 1
and bn =

1

n2
then

r = lim
n→∞

∣∣∣∣
an

bn

∣∣∣∣ = lim
n→∞

n2

n2 − 1
= 1.

Since the limit exists, then
∑

1/(n2 − 1) converges because
∑

1/n2 converges.
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Example 7.5 Consider the series ∑ n

3n

Using the Ratio Test

lim
n→∞

∣∣∣∣
an+1

an

∣∣∣∣ = lim
n→∞

n + 1

3n+1
· 3n

n
= lim

n→∞
n + 1

n
· 3n

3n+1
= lim

n→∞
n + 1

n
· 1

3
=

1

3
< 1.

Thus, the series converges.
The Root Test gives

lim
n→∞

|an|1/n = lim
n→∞

( n

3n

)1/n

= lim
n→∞

n1/n

3
=

1

3
< 1.

Example 7.6 Consider the series

∑ [
2

(−1)n − 3

]n

The form of an suggests that we use the Root Test. Note that if n is even, |an|1/n = 1

while if n is odd, |an|1/n =
1

2
. This means that lim sup |an|1/n = 1, so the Root Test

gives no information, nor will the Ratio Test. However we should look at each entry,
if n is even, then an = 1. Thus, the terms never get arbitrarily close to 0, so the series
diverges by Theorem ??.

Example 7.7 Consider the series

∞∑
n=0

2(−1)n−n = 2 +
1

4
+

1

2
+

1

16
+

1

8
+

1

64
+ · · ·

Let an = 2(−1)n−n. Since an ≤ 1

2n−1
for all n, the series converges by the Comparison

Test. That is not the real interest in this series though. Let’s look at what the Ratio
Test tells us.

an+1

an

=

{
1
8

if n is even

2 if n is odd

Therefore,
1

8
= lim inf

∣∣∣∣
an+1

an

∣∣∣∣ < 1 < lim sup

∣∣∣∣
an+1

an

∣∣∣∣ = 2,

and the Ratio Test gives us no information.
Now,

(an)1/n =

{
2

1
n
−1 if n is even

2−
1
n
−1 if n is odd

Since lim 2
1
n = lim 2−

1
n = 1, we can conclude that lim a

1/n
n =

1

2
< 1 and the series

converges by the Root Test.
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Example 7.8 Consider the series

∑ (−1)n

√
n

Since lim
√

n/(n + 1) = 1, neither the Ratio Test nor the Root Test will give any
information. Since

∑
1√
n

diverges, we cannot use the Comparison Test to show our
series converges. The Alternating Series Test shows that it converges, though.

Example 7.9 Consider the series ∑ n!

nn

Should you use the Ratio Test or the Root Test?

an+1

an

=
(n + 1)!

(n + 1)n+1
· nn

n!

=
n + 1

(n + 1)n+1
· nn

1

=
nn

(n + 1)n
=

(
n

n + 1

)n

=
1(

n + 1

n

)n

=
1(

1 + 1
n

)n

lim
n→∞

an+1

an

= lim
n→∞

1(
1 + 1

n

)n

=
1

e

Thus, the Ratio Test tells that the series converges. In fact, we can see that

∑ ann!

nn

converges for a < e and diverges for a > e. Note that from this and from our first
theorem it must be true that

lim
n→∞

n
√

n!

n
=

1

e

or n
√

n! is approximately equal to n/e for n large.
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