
Chapter 10

Continuity

In Introductio in analysin infinitorum Euler introduced continuous, discontinuous
and mixed functions. The first two of these concepts, however, have different modern
meanings. An Euler continuous function was one which was expressed by a single
analytic expression, a mixed function was expressed in terms of two or more analytic
expressions, and an Euler discontinuous function included mixed functions but was
a more general concept. Euler did not clearly indicate what he meant by an Euler
discontinuous function although it was clear that he thought of them as more general
than mixed functions. He later defined them as those functions which had arbitrarily
hand-drawn curves as their graphs.

In 1821 Cauchy gave a definition making the dependence between variables central
to the function concept. Despite the generality of his definition, which was designed
to cover both explicit and implicit functions, Cauchy thought of a function in terms
of a formula.

Fourier, in Théorie analytique de la Chaleur in 1822, gave a definition which delib-
erately moved away from analytic expressions. Dirichlet, in 1837, accepted Fourier’s
definition of a function and immediately after giving this definition he defined a
continuous function (using continuous in the modern sense). Dirichlet also gave an
example of a function defined on the interval [0, 1] which is discontinuous at every
point, namely f(x) which is defined to be 0 if x is rational and 1 if x is irrational.

In 1838 Lobachevsky gave a definition of a general function which still required it
to be continuous.

A function of x is a number which is given for each x and which
changes gradually together with x. The value of the function
could be given either by an analytic expression or by a condi-
tion which offers a means for testing all numbers and selecting
one from them, or lastly the dependence may exist but remain
unknown.

Mathematicians around this time began to construct many pathological functions.
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156 CHAPTER 10. CONTINUITY

Cauchy gave an early example when he noted that

f(x) =

{

e−1/x2

x 6= 0

f(0) = 0,

is a continuous function satisfying

f (n)(0) = 0.

Therefore, it has a Taylor series which converges everywhere but only equals the
function at 0. In 1876 Paul du Bois-Reymond made the distinction between a function
and its representation even clearer when he constructed a continuous function whose
Fourier series diverges at a point. This was taken further in 1885 when Weierstrass
showed that any continuous function is the limit of a uniformly convergent sequence
of polynomials. Earlier, in 1872, Weierstrass had sent a paper to the Berlin Academy
of Science giving an example of a continuous function which is nowhere differentiable.

10.1 Continuous Functions

For us the important issues of function are:

1. the set on which f is defined, called the domain of f and written dom(f);

2. the assignment, rule, or formula specifying the value f(x) of f at each x ∈
dom(f).

Our interest lies in functions whose domain is a subset of the reals and whose
values lie in R. These are called real-valued functions of a real variable. A subtle
difference, that is a very important difference, is that the symbol f represents the
function, itself, while f(x) represents the value of the function at x. We normally
give a function by specifying its values and without mentioning its domain. In this
case the domain is understood to be the natural domain: the largest subset of R on
which the function is a well defined real-valued function. Therefore when we talk
about “the function f(x) = 1/x” is shorthand for

“the function f which sends x to 1/x with natural domain {x ∈
R | x 6= 0}.”

Similarly, the natural domain of g(x) =
√

9 − x2 is [−3, 3] and the natural domain of
sec x is the set of real numbers x not of the form (2n + 1)π/2, n ∈ Z.
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10.1.1 Definition of Continuity

Definition 10.1 Let f be a real-valued function whose domain is a subset of R. The
function f is continuous at x = a if, for every sequence of real numbers {xn} ⊂
dom(f) that converges to a, we have that

lim
n→∞

f(xn) = f(a).

If f is continuous at each point of a set A ⊂ dom(f), then we say that f is continuous
on S. The function f is said to be continuous if it is continuous on dom(f).

Note that this means that we will say that the function f(x) = 1/x is continuous
or that the function g(x) =

√
1 − x2 is continuous. This is a choice, but we will stick

with this choice through the remainder of the course.
This definition implies that the values of f(x) are close to the value f(a) when the

values of x are close to a. The first theorem shows that this definition of continuity
corresponds to the usual definition on the real line.

Theorem 10.1 Let f be a real-valued function whose domain is a subset of R. Then
f is continuous at a ∈ dom(f) if and only if

for each ǫ > 0 there exists δ > 0 so that if x ∈ dom(f) and
|x − a| < δ then |f(x) − f(a)| < ǫ.

Proof: Suppose that this condition holds and let {xn} ⊂ dom(f) which converges to
a. We need to show that limn→∞ f(xn) = f(a). Let ǫ > 0 be given. By the condition
there exists a δ > 0 such that if x ∈ dom(f) and |x − a| < δ then |f(x) − f(a)| < ǫ.
Since lim xn = a, there is a natural number N so that if n > N then |xn − a| < δ.
Therefore, if n > N then we have that |f(xn)−f(a)| < ǫ. Thus, limn→∞ f(xn) = f(a).

Now assume that f is continuous at x = a. We will use proof by contradiction
to finish the proof of this theorem. Thus, we will assume that the condition given in
the theorem does not hold. That is, we will assume that it is not true that for each
ǫ > 0 there exists δ > 0 so that if x ∈ dom(f) and |x− a| < δ then |f(x)− f(a)| < ǫ.

Thus, it must be true that there exists an ǫ > 0 so that the condition
“if x ∈ dom(f) and |x − a| < δ then |f(x) − f(a)| < ǫ”

fails for each δ > 0. In particular, the condition
“if x ∈ dom(f) and |x − a| < 1

n
then |f(x) − f(a)| < ǫ”

fails for each n ∈ N. So for each n ∈ N there exists xn ∈ dom(f) such that |x−a| < 1
n

and |f(x) − f(a)| ≥ ǫ. Therefore we have that limn→∞ xn = a but it is not possible
for limn→∞ f(xn) = f(a) since |f(x)− f(a)| ≥ ǫ for all n. This implies that f cannot
be continuous at a, contrary to our assumption.

Why did we define continuity in terms of sequences? Many times it is easier to
work with this definition than the usual ǫ-δ definition.
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Example 10.1 Let f(x) = 3x2 + 2x− 1 for x ∈ R. Prove that f is continuous on R

by

1. using the definition,

2. using the ǫ-δ definition.

First, from the definition, suppose that limn→∞ xn = a. Then

lim
n→∞

f(xn) = lim
n→∞

(3x2
n+2xn−1) = 3

(

lim
n→∞

xn

)2

+2
(

lim
n→∞

xn

)

−1 = 3a2+2a−1 = f(a)

by using all of the limit theorems from Chapter 6. Hence f is continuous on R.
Now, we want to use the ǫ-δ of continuity to show that f is continuous on R. Let

a ∈ R and let ǫ > 0. We need to show |f(x) − f(a)| < ǫ provided that |x − a| is
sufficiently small. Note,

|f(x) − f(a)| = |(3x2 + 2x − 1) − (3a2 + 2a − 1)| = |(3x2 − 3a2) − (2x − 2a)|
= 3|x − a| · |x + a| + 2|x − a|

We need a bound on |x + a| that does not depend on x. Note that if |x − a| < 1,
then |x| < |a| + 1 and hence |x + a| ≤ |x| + |a| < 2|a| + 1. Thus,

|f(x) − f(a)| ≤ 3|x − a| · (2|a| + 1) + 2|x − a|

provided that |x − a| < 1. To guarantee that 3|x − a| · (2|a| + 1) + 2|x − a| < ǫ, we
want each piece less than ǫ/2. For the second part, we would want |x− a| < ǫ/4, but
the first |x − a| needs to be less than ǫ

6(2|a|+1)
and less than 1. So, put

δ = min

{

1,
ǫ

6(2|a| + 1)

}

.

Then clearly |x − a| < ǫ/6 < ǫ/4. Thus, by taking |x − a| < δ we have that
|f(x) − f(a)| < ǫ, as needed.

Example 10.2 Show that

f(x) =

{

x2 sin
(

1
x

)

x 6= 0

0 x = 0

is continuous at x = 0.
Let ǫ > 0. Now, |f(x) − f(0)| = |f(x)|2 ≤ x2 for all x. Since we need this to be

less than ǫ¡ then put δ =
√

ǫ. Then |x−0| < δ implies x2 < δ2 = ǫ, so f is continuous
at x = 0.
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Figure 10.1: y = x2 sin 1
x

We should note that sin( 1
x
) and 1

x
sin( 1

x
) letting both

be 0 at x = 0 are not continuous at x = 0. Essentially,
the reason is that the first tries to approach all values
between −1 and 1 as x → 0 while in the second example
the function tries to take on all real values as x → 0.

Let f be a real valued function. For k ∈ R, kf
is the function defined by (kf)(x) = k · f(x) for x ∈
dom(f). Likewise we denote by |f | the function defined
by |f |(x) = |f(x)| for x ∈ dom(f).

Theorem 10.2 Let f : R → R. If f is continuous at a ∈ dom(f) then kf and |f |
are continuous at x = a.

Proof: Let xn → a with {xn} ⊂ dom(f). Since f is continuous at x = a we have
that limn→∞ f(xn) = f(a), then from Chapter 6 we have that limn→∞ kf(xn) = kf(a)
which proves that kf is continuous at x = a.

To show that |f | is continuous at x = a we need to know that limn→∞ |f(xn)| =
|f(a)|. This follows from one of the homework problems and the inequality

||f(xn)| − |f(a)|| ≤ |f(xn) − f(a)|.

Remember that if we have two functions, there are numerous ways to combine
them to get new functions:

(f ± g)(x) = f(x) ± g(x) fg(x) = f(x)g(x)

(f/g)(x) =
f(x)

g(x)
g ◦ f(x) = g(f(x))

max(f, g)(x) = max{f(x), g(x)} min(f, g)(x) = min{f(x), g(x)}

The domains of fg, f ± g, max(f, g), and min(f, g) are dom(f) ∩ dom(g), the
domain of f/g is dom(f) ∩ {x ∈ dom(g) | f(x) 6= 0}, and the domain of g ◦ f is
{x ∈ dom(f) | f(x) ∈ dom(g)}.

Theorem 10.3 Let f, g : R → R be continuous at a ∈ R. Then

i) f ± g is continuous at x = a;

ii) fg is continuous at x = a; and

iii) f/g is continuous at x = a if g(a) 6= 0.

This follows from the similar results about the limits of sequences.
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Theorem 10.4 If f is continuous at x = a and g is continuous at x = f(a), then
the composite function g ◦ f(x) is continuous at x = a.

Proof: We are told that a ∈ dom(f) and f(a) ∈ dom(g). Let {xn} be a sequence
in dom(f) that converges to a. Since f is continuous at a, then we have that

lim
n→∞

f(xn) = f(a).

Since the sequence {f(xn)} converges to f(a) and since g is continuous at f(a), we
have that

lim
n→∞

g(f(xn)) = g(f(a)).

Hence, g ◦ f is continuous at x = a.

To show that max(f, g) is continuous at x = a, we only need to note that

max(f, g) =
1

2
(f + g) +

1

2
|f − g|.

For min(f, g) one only need to note that min(f, g) = −max(−f,−g) = 1
2
(f + g) −

1
2
|f − g|.

10.2 Properties of Continuous Functions

Let’s review a few important facts about sequences.

Lemma 10.1 If xn ∈ [a, b] for all n ∈ N and {xn} converges to x. Then x ∈ [a, b].

Proof: First we will show a ≤ x. Suppose x < a. Choose ǫ > 0 with ǫ < a − x.
Then there is no element of the sequence that is in the interval (x − ǫ, x + ǫ), which
is a contradiction. We us a similar argument to show that b ≥ x.

Theorem 10.5 (Nested Interval Theorem) Suppose In = [an, bn] where an < bn

for n ∈ N and I1 ⊇ I2 ⊇ I3 ⊇ . . .. Then

∞
⋂

n=1

In 6= ∅.

Proof: Note that we have

a1 ≤ a2 ≤ a3 · · · ≤ an ≤ · · · ≤ bn ≤ · · · ≤ b2 ≤ b1.

Then each bi is an upper bound for the set A = {a1, a2, . . .}. By the Least Upper
Bound Axiom, we can find a least upper bound for A, call it α.

We claim that α ∈ In for all n ∈ N. Fix n ∈ N. Since α is an upper bound for
A, an ≤ α. But bn is also an upper bound for A and α being the least upper bound
implies that α ≤ bn. Hence α ∈ In for all n ∈ N and α ∈ ⋂∞

n=1 In.

MATH 6101-090 Fall 2006



10.2. PROPERTIES OF CONTINUOUS FUNCTIONS 161

Theorem 10.6 (Bolzano-Weierstrass Theorem) Every bounded sequence has a
convergent subsequence.

Proof: Let {xi} be a bounded sequence. There is M ∈ R such that |xi| ≤ M for
all i ∈ N. We will construct inductively a sequence of intervals

I0 ⊃ I1 ⊃ I2 ⊃ . . .

such that

1. In is a closed interval [an, bn] where bn − an =
2M

2n
;

2. {i | xi ∈ In} is infinite.

We let I0 = [−M, M ]. This closed interval has length 2M and xi ∈ I0 for all
i ∈ N.

Suppose we have In = [an, bn] satisfying 1 and 2. Let cn be the midpoint cn =
an + bn

2
. Each of the intervals [an, cn] and [cn, bn] is half the length of In. Thus they

both have length
1

2

2M

2n
=

2M

2n+1
.

If xi ∈ In, then xi ∈ [an, cn] or xi ∈ [cn, bn], or, possibly, both. Thus at least one of
the sets

{i | xi ∈ [an, cn]} and {i | xi ∈ [cn, bn]}
is infinite. If the first is infinite, we let an+1 = an and bn+1 = cn. If the second is
infinite, we let an+1 = cn and bn+1 = bn. Let In+1 = [an+1, bn+1]. Then 1 and 2 are
satisfied.

By the Nested Interval Theorem, there is α ∈ ⋂∞
n=1 In. We need to find a subse-

quence converging to α.
Choose i1 ∈ N such that xi1 ∈ I1. Suppose we have in. We know that {i | xi ∈

In+1} is infinite. Therefore we can find in+1 > in such that xin+1
∈ In+1. This allows

us to construct a sequence of natural numbers i1 < i2 < i3 < . . . where in ∈ In for
all n ∈ N. We finish the proof by showing that the subsequence {xin} → α.

Let ǫ > 0. Choose N such that ǫ > 2M
2N . Suppose n ≥ N . Then xin ∈ In and

α ∈ In. Thus

|xin − α| ≤ 2M

2n
≤ 2M

2N
< ǫ

for all n ∈ N and {xin} → α.

10.2.1 Bounding and the Extreme Value Theorem

Theorem 10.7 (Bounding Theorem) If f : [a, b] → R is continuous, then there
is M ∈ R such that |f(x)| ≤ M for all x ∈ [a, b].

MATH 6101-090 Fall 2006



162 CHAPTER 10. CONTINUITY

Proof: Suppose this is not true. Then for any n ∈ N we can find xn ∈ [a, b] such
that |f(xn)| > n. By the Bolzano-Weierstrass Theorem, we can find a convergent
subsequence xi1 , xi2 , . . .. Note that |f(xin)| > in ≥ n. Thus, replacing {xn} by {xin},
we may, without loss of generality, assume that {xn} is convergent. So suppose
{xn} → x. Then x ∈ [a, b] and {f(xn)} → f(x). Now the sequence {f(xn)} is
unbounded, and hence divergent, a contradication.

Theorem 10.8 (Extreme Value Theorem) Suppose a < b. If f : [a, b] → R, then
there are c, d ∈ [a, b] such that f(c) ≤ f(x) ≤ f(d) for all x ∈ [a, b].

Proof: Let A = {f(x) | a ≤ x ≤ b}. Then A 6= ∅ and, by the Bounding Theorem,
A is bounded above and below. Let α = sup A. We claim that there is d ∈ [a, b] with
f(d) = α.

Since α = sup A, for each n ∈ N, there is xn ∈ [a, b] with α − 1
n

< f(xn) ≤ α.
Note that {f(xn)} converges to α. By the Bolzano-Weierstrass Theorem, we can find
a convergent subsequence. Replacing {xn} by a subsequence if necessary, we may
assume {xn} → d for some d ∈ [a, b]. Then {f(xn)} → f(d). Thus f(d) = α. Note
that f(x) ≤ α = f(d) for all x ∈ [a, b].

Similarly, we can find c ∈ [a, b] with f(c) = β = inf A and f(c) ≤ f(x) for all
x ∈ [a, b].

10.2.2 Intermediate Value Theorem

Theorem 10.9 (Intermediate Value Theorem) If f : [a, b] → R is continuous
and f(a) < 0 < f(b), then there is a < c < b with f(c) = 0.

Proof: We start to build a sequence of intervals

I0 ⊇ I1 ⊇ I2 ⊇ . . .

such that In = [an, bn], f(an) < 0 < f(bn) and bn − an = b−a
2n . Let a0 = a, b0 = b and

I0 = [a0, b0]. Then f(a0) < 0 < f(b0) and b − a = (b − a)/20.
Suppose we are have In = [an, bn] with f(an) < 0 < f(bn) and bn−an = (b−a)/2n.

Let d = (bn − an)/2. If f(d) = 0, then we have found a < d < b with f(d) = 0 and
are done. If f(d) > 0, let an+1 = an and bn+1 = d. If f(d) < 0, let an+1 = d and
bn+1 − bn.

Let In+1 = [an+1, bn+1]. Then In+1 ⊂ In, f(an+1) < 0 < f(bn+1) and bn+1−an+1 =
(b − a)/2n. By the Nested Interval Theorem, there is c ∈ ⋂∞

n=0 In. We claim that
f(c) = 0.

Since an, c ∈ In, we know that |an − c| ≤ (b− a)/2n for all n ∈ N. If ǫ > 0 is given
we can find an N such that (b − a)/2N < ǫ. Then |an − c| < ǫ for all n ∈ N. Hence
{an} converges to c. Thus, since f is continuous {f(an)} converges to f(c). Since
f(an) ≤ 0 for all n, we must have f(c) ≤ 0.

Similarly, {bn} → c and {f(bn)} → f(c). But each f(bn) > 0, thus f(c) ≥ 0.
Hence f(c) = 0. Thus there is a < c < b with f(c) = 0.
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Corollary 10.1 If f : R → R is a continuous function and I ⊂ R is an interval so
that I ⊆ dom(f), then the set f(I) = {f(x) | x ∈ I} is also an interval or a single
point.

Proof: The set J = f(I) has the property that if y0, y1 ∈ J and y0 < y < y1, then
y ∈ J by the Intermediate Value Theorem.

If glb J < lub J then J must be an interval.
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