Chapter 11

Uniform Continuity

We saw in the exercises that there are some functions that are badly discontinuous, such as the characteristic function of the rationals on the reals:

$$
f(x)= \begin{cases}1 & x \in \mathbb{Q} \\ 0 & \text { otherwise }\end{cases}
$$

When we think of continuous functions, we tend to think of the usual functions from precalculus and calculus - polynomials, trigonometric functions, exponential functions, and so forth. These are continuous, yet somehow seem to be more than just meeting the definition of continuity.

By Theorem 10.1 we know that $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous on a set $S \subseteq \operatorname{dom}(f)$ if and only if
for each $a \in S$ and $\epsilon>0$ there is a $\delta>0$ so that if $x \in \operatorname{dom}(f)$ and $|x-a|<\delta$ then $|f(x)-f(a)|<\epsilon$.

From this definition we see that the choice of δ depends both on the point $a \in S$ and on the particular $\epsilon>0$.

As an example, consider the function $f(x)=1 / x^{2}$ on the set $(0,+\infty)$. We know that f is continuous on this interval. Let $a>0$ and $\epsilon>0$. Now, we will need to show that $|f(x)-f(a)|<\epsilon$ for $|x-a|$ sufficiently small.

$$
f(x)-f(a)=\frac{1}{x^{2}}-\frac{1}{a^{2}}=\frac{a^{2}-x^{2}}{a^{2} x^{2}}=\frac{(a-x)(a+x)}{a^{2} x^{2}} .
$$

If $|x-a|<\frac{a}{2}$, then $\frac{a}{2}<|x|<\frac{3 a}{2}$ and $|x+a|<\frac{5 a}{2}$. Thus, if $|x-a|<\frac{a}{2}$, then

$$
|f(x)-f(a)|<\frac{|a-x| \cdot \frac{5 a}{2}}{\left(\frac{a}{2}\right)^{2} x^{2}}=\frac{10|x-a|}{a^{3}} .
$$

Thus if we let $\delta=\min \left\{\frac{a}{2}, \frac{a^{3} \epsilon}{10}\right\}$, then

$$
|x-a|<\delta \text { implies that }|f(x)-f(a)|<\epsilon
$$

Therefore, we have now shown that the conditions of Theorem 10.1 hold for f on $(0,+\infty)$. Note that δ depends on both ϵ and on a. Even if we fix ϵ, δ gets small when a is small. This shows that our choice of δ depends on the value of a as well as ϵ, though this might seem to be because of sloppy estimates. However, we can see that the value of δ must depend on a as well as ϵ.

It turns out that it is very useful to know when the δ in this condition can be chosen to depend only on $\epsilon>0$ and the set S, so that δ does not depend on the particular point a.

Definition 11.1 Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined on $S \subseteq \mathbb{R}$. Then f is uniformly continuous on S if

$$
\begin{aligned}
& \text { for each } \epsilon>0 \text { there is a } \delta>0 \text { so that if } x, y \in S \text { and }|x-y|<\delta \\
& \text { then }|f(x)-f(y)|<\epsilon \text {. }
\end{aligned}
$$

We will say that f is uniformly continuous if it is uniformly continuous on $\operatorname{dom}(f)$.
Note that this says that if f is uniformly continuous on S then for any given $\epsilon>0$ the choice of $\delta>0$ works for the entire set S.

Note that if a function is uniformly continuous on S, then it is continuous for every point in S. By its very definition it makes no sense to talk about a function being uniformly continuous at a point.

Now, we can show that the function $f(x)=1 / x^{2}$ is uniformly continuous on any set of the form $[a,+\infty)$. To do this we will have to find a δ that works for a given ϵ at every point in $[a,+\infty)$. We have

$$
f(x)-f(y)=\frac{(y-x)(y+x)}{x^{2} y^{2}} .
$$

We want to see if we can prove that the term $\frac{x+y}{x^{2} y^{2}}$ is bounded by some number M on $[a,+\infty)$. Once we have done that we can take $\delta=\epsilon / M$. Now,

$$
\frac{x+y}{x^{2} y^{2}}=\frac{1}{x^{2} y}+\frac{1}{x y^{2}} \leq \frac{1}{a^{3}}+\frac{1}{a^{3}}=\frac{2}{a^{3}} .
$$

Thus, we will take

$$
\delta=\frac{\epsilon a^{3}}{2}
$$

Question: How would we show that the function $g(x)=x^{2}$ is uniformly continuous on $[-5,5]$?

Theorem 11.1 If f is continuous on a closed interval $[a, b]$, then f is uniformly continuous on $[a, b]$.

Proof: Assume that f is not uniformly continuous on $[a, b]$. Then there is an $\epsilon>0$ such that for each $\delta>0$ the implication

$$
"|x-y|<\delta \text { implies }|f(x)-f(y)|<\epsilon "
$$

fails. Therefore, for each $\delta>0$ there exists at least a pair of points $x, y \in[a, b]$ such that $|x-y|<\delta$ but $|f(x)-f(y)| \geq \epsilon$.

Thus, for each $n \in \mathbb{N}$ there exist $x_{n}, y_{n} \in[a, b]$ so that $\left|x_{n}-y_{n}\right|<\frac{1}{n}$ but $\mid f(x)-$ $f(y) \mid>\epsilon$. By the Bolzano-Weierstrauss Theorem (6.14) there exists a subsequence $\left\{x_{n_{k}}\right\} \subset\left\{x_{n}\right\}$ that converges. Moreover, if $x_{0}=\lim _{k \rightarrow \infty} x_{n_{k}}$, then $x_{0} \in[a, b]$. Clearly we will also have to have that $x_{0}=\lim _{k \rightarrow \infty} y_{n_{k}}$. Since f is continuous at x_{0} we have

$$
f\left(x_{0}\right)=\lim _{k \rightarrow \infty} f\left(x_{n_{k}}\right)=\lim _{k \rightarrow \infty} f\left(y_{n_{k}}\right),
$$

so

$$
\lim _{k \rightarrow \infty}\left[f\left(x_{n_{k}}\right)-f\left(y_{n_{k}}\right)\right]=0
$$

Since $\left|f\left(x_{n_{k}}\right)-f\left(y_{n_{k}}\right)\right| \geq \epsilon$ for all k, we have a contradiction. This leads us to conclude that f is uniformly continuous on $[a, b]$.

Note that in view of this theorem the following functions are uniformly continuous on the indicated sets: x^{45} on $[a, b], \sqrt{x}$ on $[0, a]$, and $\cos (x)$ on $[a, b]$.

Theorem 11.2 If f is uniformly continuous on A and $\left\{x_{n}\right\}$ is a Cauchy sequence in A, then $\left\{f\left(x_{n}\right)\right\}$ is a Cauchy sequence.

Proof: Let $\left\{x_{n}\right\}$ be a Cauchy sequence in A and let $\epsilon>0$. Since f is uniformly continuous on A, there is a $\delta>0$ so that if $x, y \in A$ and $|x-y|<\delta$ then $|f(x)-f(y)|<$ ϵ.

Since $\left\{x_{n}\right\}$ is a Cauchy sequence, there is an $N \in \mathbb{N}$ so that if $m, n>N$ then $\left|x_{m}=x_{n}\right|<\delta$. Thus, this implies that if $m, n>N$ then $\left|f\left(x_{m}\right)-f\left(x_{n}\right)\right|<\epsilon$, which proves that $\left\{f\left(x_{n}\right)\right\}$ is a Cauchy sequence.

As an example consider the function $f(x)=1 / x^{2}$ on $(0,1)$. Let $x_{n}=1 / n$ for $n \in \mathbb{N}$. This clearly forms a Cauchy sequence in $(0,1)$. However, the function takes the values $f\left(x_{n}\right)=n^{2}$ and the sequence $\left\{n^{2}\right\}$ is clearly not a Cauchy sequence. Thus, f cannot be a uniformly continuous function on $(0,1)$.

We define a function \hat{f} to be an extension of f if $\operatorname{dom}(f) \subseteq \operatorname{dom}(\hat{f})$ and $f(x)=$ $\hat{f}(x)$ for all $x \in \operatorname{dom}(f)$.

Theorem 11.3 A real-valued function f on (a, b) is uniformly continuous on (a, b) if and only if it can be extended to a continuous function \hat{f} on $[a, b]$.

Proof: First, suppose that f can be extended to a continuous function \hat{f} on $[a, b]$. Then \hat{f} is uniformly continuous on $[a, b]$ by Theorem 11.1, so clearly f is uniformly continuous on (a, b).

Now, suppose that f is uniformly continuous on (a, b). We need to define $f(a)$ and $f(b)$ in such a way that the extension will be continuous. We will show how to deal with $\hat{f}(a)$ and the other extension is handled similarly.

Let $\left\{x_{n}\right\}$ be a sequence in (a, b) that converges to a. Since the sequence converges it must be a Cauchy sequence. Thus, $\left\{f\left(x_{n}\right)\right\}$ is also a Cauchy sequence. Therefore, it converges. Let's call this Condition A.

Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be two sequences in (a, b) that both converge to a. Define a new sequence $\left\{u_{n}\right\}$ by interleaving x_{n} and y_{n} :

$$
\left\{u_{n}\right\}_{n=1}^{\infty}=\left\{x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}, \ldots\right\}
$$

It should be clear that $\lim _{n \rightarrow \infty} u_{n}=a$. Thus, $\lim _{n \rightarrow \infty} f\left(u_{n}\right)$ exists by Condition A. Since $\left\{f\left(x_{n}\right)\right\}$ and $\left\{f\left(y_{n}\right)\right\}$ are both subsequences of $\left\{f\left(u_{n}\right)\right\}$ they must converge and converge to the same limit. Thus,

$$
\lim _{n \rightarrow \infty} f\left(x_{n}\right)=\lim _{n \rightarrow \infty} f\left(y_{n}\right)
$$

Let's call this Condition B.
Thus, define $\hat{f}(a)=\lim _{n \rightarrow \infty} f\left(s_{n}\right)$ for any sequence $\left\{x_{n}\right\}$ in (a, b) converging to a. Condition A guarantees that this limit exists, and Condition B guarantees that this limit is well-defined and unique. This implies that \hat{f} is continuous at a.

As an example consider the function $f(x)=\sin (x) / x$ for $x \neq 0$. We can extend this function on \mathbb{R} by

$$
\hat{f}(x)= \begin{cases}\frac{\sin x}{x} & \text { if } x \neq 0 \\ 1 & \text { if } x=0\end{cases}
$$

The fact that \hat{f} is continuous at $x=0$ implies that f is uniformly continuous on $(a, 0)$ and $(0, b)$ for any $a<0<b$. In fact, \hat{f} is uniformly continuous on \mathbb{R}.

Theorem 11.4 Let f be continuous on an interval I. Let I° be the interval obtained by removing from I any endpoints that happen to be in I. If f is differentiable on I° and if f^{\prime} is bounded on I°, then f is uniformly continuous on I.

Proof: Let M be a bound for f^{\prime} on I so that $\left|f^{\prime}(x)\right| \leq M$ for all $x \in I^{\circ}$. Let $\epsilon>0$ and let $\delta=\frac{\epsilon}{M}$. Consider $a, b \in I$ where $a<b$ and $|b-a|<\delta$. By the Mean Value Theorem there exists $x \in(a, b)$ so that

$$
f^{\prime}(x)=\frac{f(b)-f(a)}{b-a}
$$

so

$$
|f(b)-f(a)|=\left|f^{\prime}(x)\right| \cdot|b-a| \leq M|b-a|<M \delta=\epsilon
$$

Thus, f is uniformly continuous on I.

Why is uniform continuity important? One of the reasons for studying uniform continuity is its application to the integrability of continuous functions on a closed interval, i.e. proving that a continuous function on a closed interval is integrable. To see how this might work with Riemann sums consider a continuous nonnegative real-values function f defined on $[0,1]$. For $n \in \mathbb{N}$ and $k=0,1,2, \ldots, n-1$, let

$$
\begin{aligned}
& M_{k, n}=\operatorname{lub}\left\{f(x) \left\lvert\, x \in\left[\frac{k}{n}, \frac{k+1}{n}\right]\right.\right\} \\
& m_{k, n}=\operatorname{glb}\left\{f(x) \left\lvert\, x \in\left[\frac{k}{n}, \frac{k+1}{n}\right]\right.\right\}
\end{aligned}
$$

Then the sum of the areas of the rectangles in

Figure 11.1: Lower Sums Figure 11.2 equals

$$
U_{n}=\frac{1}{n} \sum_{k=0}^{n-1} M_{k, n}
$$

and the sum of the areas of the rectangles in Figure 11.1 equals

$$
L_{n}=\frac{1}{n} \sum_{k=0}^{n-1} m_{k, n}
$$

The function f is Riemann integrable if the numbers U_{n} and L_{n} are close together for large n, in other words, if

$$
\lim _{n \rightarrow \infty}\left(U_{n}-L_{n}\right)=0
$$

In that case we define

$$
\int_{0}^{1} f(x) d x=\lim _{n \rightarrow \infty} U_{n}=\lim _{n \rightarrow \infty} L_{n}
$$

In order to prove that the above limit is 0 , we actually need uniform continuity. Note that

$$
0 \leq U_{n}-L_{n}=\frac{1}{n} \sum_{k=0}^{n-1}\left(M_{k, n}-m_{k, n}\right)
$$

Figure 11.2: Upper Sums
for all n. Let $\epsilon>0$. By our previous theorem, f is uniformly continuous on $[0,1]$, so there exists $\delta>0$ so that

$$
x, y \in[0,1] \text { and }|x-y|<\delta \text { imply }|f(x)-f(y)|<\epsilon
$$

Now, choose an N so that $\frac{1}{N}<\delta$. If $n>N$ then for $i=0,1,2, \ldots, n-1$ we know that there exist $x_{i}, y_{i} \in\left[\frac{i}{n}, \frac{i+1}{n}\right]$ satisfying $f\left(x_{i}\right)=m_{i, n}$ and $f\left(y_{i}\right)=M_{i, n}$. Since $\left|x_{i}-y_{i}\right| \leq \frac{1}{n}<\frac{1}{N}<\delta$, the above shows that $M_{i, n}-m_{i, n}=f\left(y_{i}\right)-f\left(x_{i}\right)<\epsilon$, so that

$$
0 \leq U_{n}-L_{n}=\frac{1}{n} \sum_{i=0}^{n-1}\left(M_{i, n}-m_{i, n}\right)<\frac{1}{n} \sum_{i=0}^{n-1} \epsilon=\epsilon
$$

Which proves the limit as desired.

11.1 Limits of functions

If f is continuous at $x=a$ we are tempted to write $\lim _{x \rightarrow a} f(x)=f(a)$ except that we have not defined how to find a limit of a function, only limits of sequences. We need to formalize the concept of a limit of a function at a point.

Since we will be interested in left-hand limits, right-hand limits, ordinary limits and limits at infinity, we will start with the following definition.

Definition 11.2 Let $S \subseteq \mathbb{R}$, and let a be a real number or the symbol ∞ or $-\infty$ that is the limit of some sequence in S, and let L be a real number or the symbol ∞ or $-\infty$. We write

$$
\lim _{x \rightarrow a^{S}} f(x)=L
$$

if f is a function defined on S and fore every sequence $\left\{x_{n}\right\}$ in S with limit a we have $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$.

This is a slightly different definition than that upon which we will eventually finalize. It has the advantage that we can continue to use the power of sequences, about which we know a lot.

Note that from our definition a function f is continuous at $a \in \operatorname{dom}(f)=S$ if and only if $\lim _{x \rightarrow a^{s}} f(x)=f(a)$. Also, note that the limits, when they exist, are unique. From this we will generate the usual definitions.

Definition 11.3

a) For $a \in \mathbb{R}$ and $f: \mathbb{R} \rightarrow \mathbb{R}$ we write $\lim _{x \rightarrow a} f(x)=L$ provided $\lim _{x \rightarrow a^{s}} f(x)=L$ for some set $S=J \backslash\{a\}$ where J is an open interval containing a. $\lim _{x \rightarrow a} f(x)$ is called the two-sided limit of f at a. Note that f does not have to be defined at a and, even if f is defined at a, the value $f(a)$ does not have to be equal to the limit. In fact, $f(a)=\lim _{x \rightarrow a} f(x)$ if and only if f is defined on an open interval containing a and f is continuous at a.
b) For $a \in \mathbb{R}$ and $f: \mathbb{R} \rightarrow \mathbb{R}$ we write $\lim _{x \rightarrow a^{+}} f(x)=L$ provided $\lim _{x \rightarrow a^{s}} f(x)=L$ for some open interval $S=(a, b) . \lim _{x \rightarrow a^{+}} f(x)$ is the right hand limit of f at a. Again, f does not have to be defined at a.
c) For $a \in \mathbb{R}$ and $f: \mathbb{R} \rightarrow \mathbb{R}$ we write $\lim _{x \rightarrow a^{-}} f(x)=L$ provided $\lim _{x \rightarrow a^{s}} f(x)=L$ for some open interval $S=(c, a) . \lim _{x \rightarrow a^{-}} f(x)$ is the left hand limit of f at a.
d) For a function $f: \mathbb{R} \rightarrow \mathbb{R}$ we write $\lim _{x \rightarrow \infty} f(x)=L$ provided $\lim _{x \rightarrow \infty^{S}} f(x)=$ L for some open interval $S=(c, \infty)$. Likewise we write $\lim _{x \rightarrow-\infty} f(x)=L$ provided $\lim _{x \rightarrow-\infty^{S}} f(x)=L$ for some open interval $S=(-\infty, b)$.

Theorem 11.5 Let f_{1} and f_{2} be functions for which the limits $\lim _{x \rightarrow a^{s}} f_{1}(x)=L_{1}$ and $\lim _{x \rightarrow a^{s}} f_{2}(x)=L_{2}$ exist and are finite. THen
i) $\lim _{x \rightarrow a^{S}}\left(f_{1}+f_{2}\right)(x)$ exists and equals $L_{1}+L_{2}$;
ii) $\lim _{x \rightarrow a^{s}}\left(f_{1} f_{2}\right)(x)$ exists and equals $L_{1} L_{2}$;
iii) $\lim _{x \rightarrow a^{S}}\left(f_{1} / f_{2}\right)(x)$ exists and equals L_{1} / L_{2} provides $L_{2} \neq 0$ and $f_{2}(x) \neq 0$ for $x \in S$.

Proof: The hypotheses imply that both f_{1} and f_{2} are defined on S and that a is the limit of some sequence in S. It is clear that the functions $f_{1}+f_{2}, f_{1} f_{2}$ and f_{1} / f_{2} are defined on S, the latter if $f_{2}(x) \neq 0$ for $x \in S$.

Let $\left\{x_{n}\right\}$ be a sequence in S with limit a. By our hypotheses we have $L_{1}=$ $\lim _{n \rightarrow \infty} f_{1}\left(x_{n}\right)$ and $L_{2}=\lim _{n \rightarrow \infty} f_{2}\left(x_{n}\right)$. By our theorems on convergent sequences we have that

$$
\lim _{n \rightarrow \infty}\left(f_{1}+f_{2}\right)\left(x_{n}\right)=\lim _{n \rightarrow \infty} f_{1}\left(x_{n}\right)+\lim _{n \rightarrow \infty} f_{2}\left(x_{n}\right)=L_{1}+L_{2}
$$

and

$$
\lim _{n \rightarrow \infty}\left(f_{1} f_{2}\right)\left(x_{n}\right)=\left[\lim _{n \rightarrow \infty} f_{1}\left(x_{n}\right)\right] \cdot\left[\lim _{n \rightarrow \infty} f_{2}\left(x_{n}\right)\right]=L_{1} L_{2}
$$

Thus, condition (b) in the definition holds for $f_{1}+f_{2}$ and $f_{1} f_{2}$, so that (i) and (ii) hold. Part (iii) holds by a similar argument.

Theorem 11.6 Let f be a function for which the limit $L=\lim _{x \rightarrow a^{S}} f(x)$ exists and is finite. If g is a function define on the set $\{f(x) \mid x \in S\} \cup\{L\}$ that is continuous at L, then $\lim _{x \rightarrow a^{s}} g \circ f(x)$ exists and equals $g(L)$.

Example 11.1 Why does g have to be continuous at $x=L$? Consider the following example. Let

$$
f(x)=1+x \sin \frac{\pi}{x}, x \neq 0 \quad \text { and } \quad g(x)= \begin{cases}4 & x \neq 1 \\ -4 & x=1\end{cases}
$$

Now, note that

$$
\lim _{x \rightarrow 0} f(x)=1 \quad \lim _{x \rightarrow 1} g(x)=4
$$

but what about $\lim _{x \rightarrow 0} g(f(x))$? Let $x_{n}=\frac{2}{n}$ for $n \in \mathbb{N}$, then

$$
f\left(x_{n}\right)=1+\frac{2}{n} \sin \left(\frac{n \pi}{2}\right)= \begin{cases}1 & \text { if } n \text { is even } \\ 1 \pm \frac{2}{n} \neq 1 & \text { if } n \text { is odd }\end{cases}
$$

Thus,

$$
g\left(f\left(x_{n}\right)\right)= \begin{cases}-4 & \text { if } n \text { is even } \\ 4 & \text { if } n \text { is odd }\end{cases}
$$

Now, $\lim _{n \rightarrow \infty} x_{n}=0$ so $\left\{x_{n}\right\}$ converges, but $\lim _{x \rightarrow 0} g(f(x))$ cannot exist.
Theorem 11.7 Let f be a function defined on $S \subseteq \mathbb{R}$, let $a \in \mathbb{R}$ be a real number that is the limit of some sequence in S, and let L be a real number. Then $\lim _{x \rightarrow a^{s}} f(x)=L$ if and only if for each $\epsilon>0$ there exists $a \delta>0$ such that if $x \in S$ and $|x-a|<\delta$ then $|f(x)-L|<\epsilon$.

Corollary 11.1 Let f be a function defined on $J \backslash\{a\}$ for some open interval J containing a, and let L be a real number. Then $\lim _{x \rightarrow a} f(x)=L$ if and only if for each $\epsilon>0$ there exists $a \delta>0$ such that if $0<|x-a|<\delta$ then $|f(x)-L|<\epsilon$.

Corollary 11.2 Let f be a function defined on some open interval (a, b), and let L be a real number. Then $\lim _{x \rightarrow a^{+}} f(x)=L$ if and only if for each $\epsilon>0$ there exists a $\delta>0$ such that if $a<x<a+\delta$ then $|f(x)-L|<\epsilon$.

Theorem 11.8 Let f be a function defined on $J \backslash\{a\}$ for some open interval J containing a. Then $\lim _{x \rightarrow a} f(x)$ exists if and only if the limits $\lim _{x \rightarrow a^{+}} f(x)$ and $\lim _{x \rightarrow a^{-}} f(x)$ both exist and are equal, in which case all three limits are equal.

