
Chapter 11

Uniform Continuity

We saw in the exercises that there are some functions that are badly discontinuous,
such as the characteristic function of the rationals on the reals:

f(x) =

{

1 x ∈ Q

0 otherwise.

When we think of continuous functions, we tend to think of the usual functions
from precalculus and calculus — polynomials, trigonometric functions, exponential
functions, and so forth. These are continuous, yet somehow seem to be more than
just meeting the definition of continuity.

By Theorem 10.1 we know that f : R → R is continuous on a set S ⊆ dom(f) if
and only if

for each a ∈ S and ǫ > 0 there is a δ > 0 so that if x ∈ dom(f)
and |x − a| < δ then |f(x) − f(a)| < ǫ.

From this definition we see that the choice of δ depends both on the point a ∈ S
and on the particular ǫ > 0.

As an example, consider the function f(x) = 1/x2 on the set (0, +∞). We know
that f is continuous on this interval. Let a > 0 and ǫ > 0. Now, we will need to show
that |f(x) − f(a)| < ǫ for |x − a| sufficiently small.

f(x) − f(a) =
1

x2
− 1

a2
=

a2 − x2

a2x2
=

(a − x)(a + x)

a2x2
.

If |x − a| < a

2
, then a

2
< |x| < 3a

2
and |x + a| < 5a

2
. Thus, if |x − a| < a

2
, then

|f(x) − f(a)| <
|a − x| · 5a

2

(a

2
)2x2

=
10|x− a|

a3
.

Thus if we let δ = min{a

2
, a3ǫ

10
}, then

|x − a| < δ implies that |f(x) − f(a)| < ǫ.
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166 CHAPTER 11. UNIFORM CONTINUITY

Therefore, we have now shown that the conditions of Theorem 10.1 hold for f on
(0, +∞). Note that δ depends on both ǫ and on a. Even if we fix ǫ, δ gets small when
a is small. This shows that our choice of δ depends on the value of a as well as ǫ,
though this might seem to be because of sloppy estimates. However, we can see that
the value of δ must depend on a as well as ǫ.

It turns out that it is very useful to know when the δ in this condition can be
chosen to depend only on ǫ > 0 and the set S, so that δ does not depend on the
particular point a.

Definition 11.1 Let f : R → R be defined on S ⊆ R. Then f is uniformly continu-
ous on S if

for each ǫ > 0 there is a δ > 0 so that if x, y ∈ S and |x−y| < δ
then |f(x) − f(y)| < ǫ.

We will say that f is uniformly continuous if it is uniformly continuous on dom(f).

Note that this says that if f is uniformly continuous on S then for any given ǫ > 0
the choice of δ > 0 works for the entire set S.

Note that if a function is uniformly continuous on S, then it is continuous for
every point in S. By its very definition it makes no sense to talk about a function
being uniformly continuous at a point.

Now, we can show that the function f(x) = 1/x2 is uniformly continuous on any
set of the form [a, +∞). To do this we will have to find a δ that works for a given ǫ
at every point in [a, +∞). We have

f(x) − f(y) =
(y − x)(y + x)

x2y2
.

We want to see if we can prove that the term
x + y

x2y2
is bounded by some number M

on [a, +∞). Once we have done that we can take δ = ǫ/M . Now,

x + y

x2y2
=

1

x2y
+

1

xy2
≤ 1

a3
+

1

a3
=

2

a3
.

Thus, we will take

δ =
ǫa3

2
.

Question: How would we show that the function g(x) = x2 is uniformly continuous
on [−5, 5]?

Theorem 11.1 If f is continuous on a closed interval [a, b], then f is uniformly
continuous on [a, b].
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Proof: Assume that f is not uniformly continuous on [a, b]. Then there is an ǫ > 0
such that for each δ > 0 the implication

“|x − y| < δ implies |f(x) − f(y)| < ǫ”

fails. Therefore, for each δ > 0 there exists at least a pair of points x, y ∈ [a, b] such
that |x − y| < δ but |f(x) − f(y)| ≥ ǫ.

Thus, for each n ∈ N there exist xn, yn ∈ [a, b] so that |xn − yn| < 1

n
but |f(x) −

f(y)| > ǫ. By the Bolzano-Weierstrauss Theorem (6.14) there exists a subsequence
{xnk

} ⊂ {xn} that converges. Moreover, if x0 = limk→∞ xnk
, then x0 ∈ [a, b]. Clearly

we will also have to have that x0 = limk→∞ ynk
. Since f is continuous at x0 we have

f(x0) = lim
k→∞

f(xnk
) = lim

k→∞

f(ynk
),

so

lim
k→∞

[f(xnk
) − f(ynk

)] = 0.

Since |f(xnk
)−f(ynk

)| ≥ ǫ for all k, we have a contradiction. This leads us to conclude
that f is uniformly continuous on [a, b].

Note that in view of this theorem the following functions are uniformly continuous
on the indicated sets: x45 on [a, b],

√
x on [0, a], and cos(x) on [a, b].

Theorem 11.2 If f is uniformly continuous on A and {xn} is a Cauchy sequence in
A, then {f(xn)} is a Cauchy sequence.

Proof: Let {xn} be a Cauchy sequence in A and let ǫ > 0. Since f is uniformly
continuous on A, there is a δ > 0 so that if x, y ∈ A and |x−y| < δ then |f(x)−f(y)| <
ǫ.

Since {xn} is a Cauchy sequence, there is an N ∈ N so that if m, n > N then
|xm = xn| < δ. Thus, this implies that if m, n > N then |f(xm) − f(xn)| < ǫ, which
proves that {f(xn)} is a Cauchy sequence.

As an example consider the function f(x) = 1/x2 on (0, 1). Let xn = 1/n for
n ∈ N. This clearly forms a Cauchy sequence in (0, 1). However, the function takes
the values f(xn) = n2 and the sequence {n2} is clearly not a Cauchy sequence. Thus,
f cannot be a uniformly continuous function on (0, 1).

We define a function f̂ to be an extension of f if dom(f) ⊆ dom(f̂) and f(x) =
f̂(x) for all x ∈ dom(f).

Theorem 11.3 A real-valued function f on (a, b) is uniformly continuous on (a, b)
if and only if it can be extended to a continuous function f̂ on [a, b].
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168 CHAPTER 11. UNIFORM CONTINUITY

Proof: First, suppose that f can be extended to a continuous function f̂ on [a, b].
Then f̂ is uniformly continuous on [a, b] by Theorem 11.1, so clearly f is uniformly
continuous on (a, b).

Now, suppose that f is uniformly continuous on (a, b). We need to define f(a)
and f(b) in such a way that the extension will be continuous. We will show how to
deal with f̂(a) and the other extension is handled similarly.

Let {xn} be a sequence in (a, b) that converges to a. Since the sequence converges
it must be a Cauchy sequence. Thus, {f(xn)} is also a Cauchy sequence. Therefore,
it converges. Let’s call this Condition A.

Let {xn} and {yn} be two sequences in (a, b) that both converge to a. Define a
new sequence {un} by interleaving xn and yn:

{un}∞n=1 = {x1, y1, x2, y2, x3, y3, . . .}
It should be clear that limn→∞ un = a. Thus, limn→∞ f(un) exists by Condition A.
Since {f(xn)} and {f(yn)} are both subsequences of {f(un)} they must converge and
converge to the same limit. Thus,

lim
n→∞

f(xn) = lim
n→∞

f(yn).

Let’s call this Condition B.
Thus, define f̂(a) = limn→∞ f(sn) for any sequence {xn} in (a, b) converging to a.

Condition A guarantees that this limit exists, and Condition B guarantees that this
limit is well-defined and unique. This implies that f̂ is continuous at a.

As an example consider the function f(x) = sin(x)/x for x 6= 0. We can extend
this function on R by

f̂(x) =

{

sinx
x

if x 6= 0

1 if x = 0

The fact that f̂ is continuous at x = 0 implies that f is uniformly continuous on (a, 0)
and (0, b) for any a < 0 < b. In fact, f̂ is uniformly continuous on R.

Theorem 11.4 Let f be continuous on an interval I. Let I◦ be the interval obtained
by removing from I any endpoints that happen to be in I. If f is differentiable on I◦

and if f ′ is bounded on I◦, then f is uniformly continuous on I.

Proof: Let M be a bound for f ′ on I so that |f ′(x)| ≤ M for all x ∈ I◦. Let ǫ > 0
and let δ = ǫ

M
. Consider a, b ∈ I where a < b and |b − a| < δ. By the Mean Value

Theorem there exists x ∈ (a, b) so that

f ′(x) =
f(b) − f(a)

b − a
,

so
|f(b) − f(a)| = |f ′(x)| · |b − a| ≤ M |b − a| < Mδ = ǫ.

Thus, f is uniformly continuous on I.
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Figure 11.1: Lower Sums

Why is uniform continuity important? One
of the reasons for studying uniform continuity
is its application to the integrability of contin-
uous functions on a closed interval, i.e. proving
that a continuous function on a closed interval
is integrable. To see how this might work with
Riemann sums consider a continuous nonnega-
tive real-values function f defined on [0, 1]. For
n ∈ N and k = 0, 1, 2, . . . , n − 1, let

Mk,n = lub{f(x) | x ∈ [
k

n
,
k + 1

n
]}

mk,n = glb{f(x) | x ∈ [
k

n
,
k + 1

n
]}

Then the sum of the areas of the rectangles in
Figure 11.2 equals

Un =
1

n

n−1
∑

k=0

Mk,n

and the sum of the areas of the rectangles in Figure 11.1 equals

Ln =
1

n

n−1
∑

k=0

mk,n.

Figure 11.2: Upper Sums

The function f is Riemann integrable if the
numbers Un and Ln are close together for large
n, in other words, if

lim
n→∞

(Un − Ln) = 0.

In that case we define
∫

1

0

f(x) dx = lim
n→∞

Un = lim
n→∞

Ln.

In order to prove that the above limit is 0, we
actually need uniform continuity. Note that

0 ≤ Un − Ln =
1

n

n−1
∑

k=0

(Mk,n − mk,n)

for all n. Let ǫ > 0. By our previous theorem,
f is uniformly continuous on [0, 1], so there exists δ > 0 so that

x, y ∈ [0, 1] and |x − y| < δ imply |f(x) − f(y)| < ǫ.
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170 CHAPTER 11. UNIFORM CONTINUITY

Now, choose an N so that 1

N
< δ. If n > N then for i = 0, 1, 2, . . . , n − 1 we know

that there exist xi, yi ∈ [ i

n
, i+1

n
] satisfying f(xi) = mi,n and f(yi) = Mi,n. Since

|xi − yi| ≤ 1

n
< 1

N
< δ, the above shows that Mi,n −mi,n = f(yi) − f(xi) < ǫ, so that

0 ≤ Un − Ln =
1

n

n−1
∑

i=0

(Mi,n − mi,n) <
1

n

n−1
∑

i=0

ǫ = ǫ.

Which proves the limit as desired.

11.1 Limits of functions

If f is continuous at x = a we are tempted to write limx→a f(x) = f(a) except that
we have not defined how to find a limit of a function, only limits of sequences. We
need to formalize the concept of a limit of a function at a point.

Since we will be interested in left-hand limits, right-hand limits, ordinary limits
and limits at infinity, we will start with the following definition.

Definition 11.2 Let S ⊆ R, and let a be a real number or the symbol ∞ or −∞ that
is the limit of some sequence in S, and let L be a real number or the symbol ∞ or
−∞. We write

lim
x→aS

f(x) = L

if f is a function defined on S and fore every sequence {xn} in S with limit a we have
limn→∞ f(xn) = L.

This is a slightly different definition than that upon which we will eventually
finalize. It has the advantage that we can continue to use the power of sequences,
about which we know a lot.

Note that from our definition a function f is continuous at a ∈ dom(f) = S if and
only if limx→aS f(x) = f(a). Also, note that the limits, when they exist, are unique.
From this we will generate the usual definitions.

Definition 11.3

a) For a ∈ R and f : R → R we write limx→a f(x) = L provided limx→aS f(x) = L
for some set S = J \ {a} where J is an open interval containing a. limx→a f(x)
is called the two-sided limit of f at a. Note that f does not have to be defined
at a and, even if f is defined at a, the value f(a) does not have to be equal to
the limit. In fact, f(a) = limx→a f(x) if and only if f is defined on an open
interval containing a and f is continuous at a.

b) For a ∈ R and f : R → R we write limx→a+ f(x) = L provided limx→aS f(x) = L
for some open interval S = (a, b). limx→a+ f(x) is the right hand limit of f at
a. Again, f does not have to be defined at a.
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11.1. LIMITS OF FUNCTIONS 171

c) For a ∈ R and f : R → R we write limx→a− f(x) = L provided limx→aS f(x) = L
for some open interval S = (c, a). limx→a− f(x) is the left hand limit of f at a.

d) For a function f : R → R we write limx→∞ f(x) = L provided limx→∞
S f(x) =

L for some open interval S = (c,∞). Likewise we write limx→−∞ f(x) = L
provided limx→−∞

S f(x) = L for some open interval S = (−∞, b).

Theorem 11.5 Let f1 and f2 be functions for which the limits limx→aS f1(x) = L1

and limx→aS f2(x) = L2 exist and are finite. THen

i) limx→aS(f1 + f2)(x) exists and equals L1 + L2;

ii) limx→aS(f1f2)(x) exists and equals L1L2;

iii) limx→aS(f1/f2)(x) exists and equals L1/L2 provides L2 6= 0 and f2(x) 6= 0 for
x ∈ S.

Proof: The hypotheses imply that both f1 and f2 are defined on S and that a is
the limit of some sequence in S. It is clear that the functions f1 + f2, f1f2 and f1/f2

are defined on S, the latter if f2(x) 6= 0 for x ∈ S.
Let {xn} be a sequence in S with limit a. By our hypotheses we have L1 =

limn→∞ f1(xn) and L2 = limn→∞ f2(xn). By our theorems on convergent sequences
we have that

lim
n→∞

(f1 + f2)(xn) = lim
n→∞

f1(xn) + lim
n→∞

f2(xn) = L1 + L2,

and

lim
n→∞

(f1f2)(xn) =
[

lim
n→∞

f1(xn)
]

·
[

lim
n→∞

f2(xn)
]

= L1L2.

Thus, condition (b) in the definition holds for f1 + f2 and f1f2, so that (i) and (ii)
hold. Part (iii) holds by a similar argument.

Theorem 11.6 Let f be a function for which the limit L = limx→aS f(x) exists and
is finite. If g is a function define on the set {f(x) | x ∈ S} ∪ {L} that is continuous
at L, then limx→aS g ◦ f(x) exists and equals g(L).

Example 11.1 Why does g have to be continuous at x = L? Consider the following
example. Let

f(x) = 1 + x sin
π

x
, x 6= 0 and g(x) =

{

4 x 6= 1

−4 x = 1

Now, note that

lim
x→0

f(x) = 1 lim
x→1

g(x) = 4
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172 CHAPTER 11. UNIFORM CONTINUITY

but what about limx→0 g(f(x))? Let xn = 2

n
for n ∈ N, then

f(xn) = 1 +
2

n
sin

(nπ

2

)

=

{

1 if n is even

1 ± 2

n
6= 1 if n is odd

Thus,

g(f(xn)) =

{

−4 if n is even

4 if n is odd

Now, limn→∞ xn = 0 so {xn} converges, but limx→0 g(f(x)) cannot exist.

Theorem 11.7 Let f be a function defined on S ⊆ R, let a ∈ R be a real number that
is the limit of some sequence in S, and let L be a real number. Then limx→as f(x) = L
if and only if for each ǫ > 0 there exists a δ > 0 such that if x ∈ S and |x − a| < δ
then |f(x) − L| < ǫ.

Corollary 11.1 Let f be a function defined on J \ {a} for some open interval J
containing a, and let L be a real number. Then limx→a f(x) = L if and only if for
each ǫ > 0 there exists a δ > 0 such that if 0 < |x − a| < δ then |f(x) − L| < ǫ.

Corollary 11.2 Let f be a function defined on some open interval (a, b), and let L
be a real number. Then limx→a+ f(x) = L if and only if for each ǫ > 0 there exists a
δ > 0 such that if a < x < a + δ then |f(x) − L| < ǫ.

Theorem 11.8 Let f be a function defined on J \ {a} for some open interval J
containing a. Then limx→a f(x) exists if and only if the limits limx→a+ f(x) and
limx→a− f(x) both exist and are equal, in which case all three limits are equal.
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