
Chapter 12

Sequences and Series of Functions-
The Highlights

We won’t have time this semester to study sequences and series of functions in any
depth, but we will look a few of the highlights - important results - to see where this
will head us in the future.

As I have said earlier, my framework for this course is making an analogue in the
realm of functions to the construction of the real numbers from the natural numbers.
First we start with the natural numbers (polynomials) from which we build the ra-
tional numbers (rational functions) and then we are led to real numbers (examples
such as the transcendental functions). Along the way we saw that we were able to
represent any real number as a decimal. In reality this decimal representation is a
series of the form

∑
an/10n where an = 0, 1, . . . , 9. Is there such a thing as a ”decimal

representation” for the set of, say, continuous functions? What would it look like?
How would we represent them?

We have mentioned in other places that we use polynomials to approximate other
functions because they tend to be easier to evaluate. This is helpful in evaluating
functions numerically using technology, because computers basically only add and
multiply - unless you layer a filtering language over the machine code. This idea of
approximating by polynomials has more ancient roots though. One of Newton’s main
contributions to calculus was his work on the binomial theorem:

(x + a)n =
n∑

k=0

xkan−k.

He begins, as did Wallis, by making area computations of the curves (1 − x2)n, and
tabulating the results. He noticed the Pascal triangle and reconstructed the formula

(
n

k

)
=

n(n− 1) . . . (n− k + 1)

k!
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for positive integers n. Then to compute
∫ x

0

√
1− x2 dx, he simply applied this rela-

tion with n = 1/2. This of course generated an infinite series because the terms do
not terminate.

Next he generalized to function of the form (a + bx)n for any n including n < 0.
This gave him the general binomial theorem - but not a proof.

He was able to determine the power series for ln(1 + x) by integrating the series
for (1 + x)−1, written as the binomial series. In modern notation, we have

(1 + x)−1 = 1 +

(−1

1

)
x +

(−1

2

)
x2 +

(−1

3

)
x3 + . . .

= 1 +
−1

1
x +

−1×−2

2
x2 +

(−1×−2×−3

3!

)
x3 + . . .

= 1− x + x2 − x3 . . .

Now he integrated to get the series

ln(1 + x) = x− 1

2
x2 +

1

3
x3 − 1

4
x4 . . .

With this he was able to compute logarithms of the number 1± 0.1, 1± 0.2, 1± 0.01
and 1± 0.02 to 50 places of accuracy. Then using identities such as

2 =
1.2× 1.2

0.8× 0.9

he was able to compute the logarithm of many numbers.

In general the binomial series is the formal series of the form

(1 + x)α =
∞∑

k=0

(
α

k

)
xk,

in which (
α

k

)
=

α(α− 1)(α− 2) . . . (α− (k − 1))

k!
=

(−1)k

k!
(−α)k

with
(

α
0

)
= 1 for any real number α. The series convergence depends on x and α.

• If |x| < 1, the series converges to (1 + x)α for all α ∈ R.

• If x = 1, the series converges to 2α for α > −1.

• If x = −1, the series converges to 0 for α ≥ 0.
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Note that for
√

1 + x this gives us:

(1 + x)1/2 =
∞∑

k=0

(
1
2

k

)
xk

=

(
1
2

0

)
x0 +

(
1
2

1

)
x +

(
1
2

2

)
x2 +

(
1
2

3

)
x3 + . . .

= 1 +
1
2

1!
x +

1
2
(1

2
− 1)

2!
x2 +

1
2
(1

2
− 1)(1

2
− 2)

3!
x3 + . . .

= 1 +
1

2
x +

1
2
(−1

2
)

2!
x2 +

1
2
(−1

2
)(−3

2
)

3!
x3 + . . .

= 1 +
1

2
x− 1

8
x2 +

1

16
x3 + . . .

(1 + x)1/2 = 1 +
1

2
x− 1

8
x2 +

1

16
x3 − 5

128
x4 +

7

256
x5 − 21

1024
x6 +

33

2048
x7 − . . .

The concept of power series has been around for quite awhile. Newton, however,
did not consider the question of convergence. That concept was developed later.

12.1 Power Series

Given a sequence of real numbers, the series

∞∑
n=0

anxn

is called a power series in x. This power series is a ”formal” definition. It does not
consider the concept of convergence. However, if we are to consider functions, then
we would say that the above power series is a function provided that it converges for
some or all values of x. Note that it does converge for x = 0 and we will adopt the
convention that 00 = 1. Whether it converges for other values of x depends on the
choice of coefficients an. Given any sequence {an} one of the following holds for its
power series:

a) the power series converges for all x ∈ R;

b) the power series converges only at x = 0;

c) the power series converges for all x in some bounded interval centered at 0.

These follow from the following theorem.

Theorem 12.1 For the power series
∑

anx
n, let

β = lim sup |an|1/n and R =
1

β
.

[If β = 0 we set R = +∞ and if β = +∞ we set R = 0.] Then

MATH 6101-090 Fall 2006



176
CHAPTER 12. SEQUENCES AND SERIES OF FUNCTIONS- THE

HIGHLIGHTS

i) the power series converges for |x| < R;

ii) the power series converges for |x| > R.

R is called the radius of convergence for the power series.

Recall that if lim
∣∣∣an+1

an

∣∣∣ exists, then this limit equals β and the limit is often easier

to calculate than the lim sup |an|1/n.

Example 12.1 Consider
∞∑

n=0

1

n!
xn.

It is easy enough to check that

lim

∣∣∣∣
an+1

an

∣∣∣∣ = lim
1

n + 1
= 0.

Thus, β = 0, R = +∞ and the series has an infinite radius of convergence. Thus, it
converges for all x ∈ R. Note,

∞∑
n=0

1

n!
xn = ex.

Example 12.2 Consider
∞∑

n=0

xn.

It is easy enough to check that β = 1, R = 1 and the series has an radius of conver-
gence of 1. We note that the series does not converge for x = 1 or x = −1. Thus the
interval of convergence is (−1, 1). Note,

∞∑
n=0

xn =
1

1− x
.

Example 12.3 Consider
∞∑

n=0

1

n
xn.

Then β = 1, R = 1 and the series has an radius of convergence of 1. We note that
the series does not converge for x = 1 since it is the harmonic series, but it does
converge for x = −1 (Alternating Series Test). Thus the interval of convergence is
[−1, 1). Note,

∞∑
n=0

1

n
xn = log(1− x).
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Example 12.4 Consider
∞∑

n=0

1

n2
xn.

Then β = 1, R = 1 and the series has an radius of convergence of 1. This series
converges at both x = 1 and at x = −1. Thus the interval of convergence is [−1, 1].

Example 12.5 Consider
∞∑

n=0

n!xn.

Then β = +∞ and R = 0. This series diverges for x 6= 0.

Example 12.6 Consider
∞∑

n=0

2−nx3n.

This is deceptive since at first you will want to try to compute β = lim sup(2−n)1/n = 1
2

and R = 2. But this is incorrect! 2−n is the coefficient of x3n and we have to work
with the coefficients of xn. We have to be more careful here. We can write this series
as

∑∞
n=0 anx

n where a3k = 2−k and an = 0 if n is not a multiple of 3. Then you can
calculate β by using the subsequence of all nonzero terms. This gives us

β = lim sup |an|1/n = lim
k→∞

|a3k|1/3k = lim
k→∞

|2−k|1/3k = 2−1/3.

Thus, the radius of convergence is 21/3.

One of the major goals is to understand the function given by the power series

f(x) =
∞∑

n=0

anx
n for |x| < R.

We want to know answers to such questions as: Is f continuous? Is f differentiable?
If so, can you differentiate f term-by-term:

f(x) =
∞∑

n=1

nanxn−1?

Can you integrate a power series term-by-term?
These seem reasonable and for the most part seem like they might be true. That

right there should make you pause. If we have learned anything, we know that we
can usually create counterexamples to simple statements without sufficient conditions.
That means we need to be careful.
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Let’s look at the question of continuity. The partial sums fn(x) =
∑n

k=0 akx
k are

all continuous since they are polynomials and we have that

lim
n→∞

fn(x) = f(x) for |x| < R.

Therefore, we would be in good shape if the following were true: If {fn} is a sequence
of continuous functions on (a, b) and if lim fn(x) = f(x) for all x ∈ (a, b), then f is
continuous on (a, b). Unfortunately, this is false.

Consider the following simple example. Let fn(x) = (1 − |x|)n for x ∈ (−1, 1).
Let f be given by

f(x) =

{
0 if x 6= 0

1 if x = 0

Then lim fn(x) = f(x) for all x ∈ (−1, 1). Each fn is continuous, but f(x) is not
continuous at x = 0.

12.2 Uniform Convergence

Definition 12.1 Let {fn} be a sequence of real-valued functions defined on a set
U ⊆ R. The sequence {fn} converges pointwise to f(x) defined on U if

lim
n→∞

fn(x) = f(x) for all x ∈ U.

We will write fn → f pointwise on U .

All of the above examples were pointwise convergence. Also fn(x) = xn converges
pointwise on [0,1] to the function f(x) which is 0 on [0, 1) and f(1) = 1.

Note that pointwise convergence says that for each ε > 0 and x ∈ U there is an
N ∈ N so that |fn(x) − f(x)| < ε whenever n > N . This value of N depends on ε
and on x ∈ U . We want something stronger.

Definition 12.2 Let {fn} be a sequence of real-valued functions defined on a set
U ⊆ R. The sequence {fn} converges uniformly to f(x) defined on U if for each
ε > 0 there is a number N ∈ N so that |fn(x) − f(x)| < ε for all x ∈ U and all
n > N . In this case we write fn → f uniformly on U .

Note that if fn → f uniformly on U and if ε > 0 then there is an N ∈ N so that
f(x) − ε < fn(x) < f(x) + ε for all x ∈ U and n > N . In other words, the graph of
fn lies in a strip between f(x)− ε and f(x) + ε for all x ∈ U .

Theorem 12.2 A uniform limit of continuous functions is continuous.
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Uniform convergence can be reformulated as follows. A sequence {fn} of func-
tions on a set U ⊆ R converges uniformly to a function f on U if and only if

lim
n→∞

[lub{|f(x)− fn(x)| | x ∈ U}] = 0.

This says that we can decide if a sequence converges uniformly by calculating this
difference for each n. If f − fn is differentiable, we could use calculus to find these
bounds.

Example 12.7 Consider

fn(x) =
x

1 + nx2
for x ∈ R.

Now, lim fn(0) = 0. If x 6= 0 then lim(1+nx2) = +∞ so that fn → 0 pointwise on R.
To find the maximum and minimum of fn, find the critical points for fn and classify
them according to type. The critical points are x = ±1√

n
. fn takes is maximum at 1√

n

and its minimum at − 1√
n
. Since f(± 1√

n
) = ± 1

2
√

n
we can conclude that

lim
n→∞

[lub{|fn(x)| | x ∈ U}] = lim
n→∞

1

2
√

n
= 0.

Thus, fn → 0 uniformly on R.

One strength of uniform continuity is the following result.

Theorem 12.3 Let {fn} be a sequence of continuous functions on [a, b], and suppose
that fn → f uniformly on [a, b]. Then

lim
n→∞

∫ b

a

fn(x) dx =

∫ b

a

f(x) dx.

A sequence of functions {fn} defined on U ⊆ R is uniformly Cauchy on U if for
each ε > 0 there is a number N ∈ N so that |fn(x)− fm(x)| < ε for all x ∈ U and all
m,n > N .

This leads us to the following result.

Theorem 12.4 Let {fn} be a sequence of functions defined and uniformly Cauchy
on a set U ⊆ R. Then there exists a function f on U so that fn → f uniformly on
U .

This result is very useful in looking at series of functions.

Theorem 12.5 Consider a series
∑

gk of functions on a set U ⊆ R. Suppose that
each gk is continuous on S and that the series converges uniformly on U . Then the
series represents a continuous function on U .
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This leads to the Weierstrauss M-Test.

Theorem 12.6 (Weierstrauss M-Test) Let {Mk} be a sequence of non-negative
real numbers where

∑
Mk < ∞. If |gk(x)| ≤ Mk for all x ∈ U , then

∑
gk converges

uniformly on U .

Lemma 12.1 If the series
∑

gk converges uniformly on a set U ⊆ R then

lim
n→∞

[lub{|gn(x)| | x ∈ U}] = 0.

Example 12.8 Let f(x) =
∞∑

n=1

2−nxn. We can easily show that the radius of con-

vergence is 2. It is also clear that the series does not converge at x = 2 or at x = −2.
Thus, the interval of convergence is (−2, 2).

Let 0 < a < 2. Note that
∑∞

n=1 2−nan =
∑∞

n=1(
a
2
)n converges. Since |2−nxn| <

2−nan = (a
2
)n for x ∈ [−a, a], the Weierstrauss M -Test shows that the series

∑∞
n=1 2−nxn

converges uniformly to a function on [−a, a]. By our previous theorem, the limit func-
tion f is continuous at each point of the set [−a, a]. Since a can be any number less
than 2 we can conclude that f is continuous on (−2, 2).

Now, lub{|2−nxn| | x ∈ (−2, 2)} = 1 for all n. Thus, by the above corollary, the
convergence of the series cannot be uniform on (−2, 2).

All of this tells us the following:

Theorem 12.7 Let
∑

anx
n be a power series with radius of convergence R > 0. If

0 < R1 < R, then the power series converges uniformly on [−R1, R1] to a continuous
function.

As a corollary of this we see that the power series converges to a continuous function
on the open interval (−R, R). However, from our previous example we see that the
series need not converge uniformly on its interval of convergence.

Lemma 12.2 If the power series
∑

anx
n has a radius of convergence R, then the

power series
∞∑

n=1

nanxn−1 and
∞∑

n=0

an

n + 1
xn+1

also have radius of convergence R.

The next result indicates that a power series can be integrated term-by-term inside
it interval of convergence.

Theorem 12.8 Suppose f(x) =
∑

anxn has radius of convergence R > 0. Then

∫ x

0

f(t) dt =
∞∑

n=0

an

n + 1
xn+1 for |x| < R.
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The next theorem indicates that we can differentiate term-by-term also.

Theorem 12.9 Suppose f(x) =
∑

anx
n has radius of convergence R > 0. Then f

is differentiable on (−R,R) and

f ′(x) =
∞∑

n=1

nanx
n−1 for |x| < R.

Suppose that a power series has a radius of convergence greater than 1, and let f
denote the function given by this power series. The first theorem of this section tells
us that the partial sums of the power series get uniformly close to f on [−1, 1]. In
other words, f can be approximated uniformly on [−1, 1] by polynomials. What if
you are given a function first? Can any function be approximated by polynomials?

Theorem 12.10 (Weierstrauss Approximation Theorem) Every continuous func-
tion on a closed interval [a, b] can be uniformly approximated by polynomials on [a, b].

S.N. Bernstein actually gave a constructive proof of this on [0, 1]. For a function
f on [0, 1], define the Bernstein polynomials Bnf by

Bnf(x) =
n∑

k=0

f(k/n)

(
n

k

)
xk(1− x)n−k.

He then proved that Bnf → f uniformly on [0, 1].
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