
SERIES
October 02, 2006

1. Determine if each of the following sequences converges or diverges. Find the limit if requested.

(a) lim
n→∞

n!
nn

= 0

(b) Verify that lim
n→∞

n
√

an + bn = max(a, b)

Whichever is larger, a or b will dominate the sum an + bn.
(c) lim

n→∞n−√n + a
√

n + b

lim
n→∞n−√n + a

√
n + b = lim

n→∞n−√n + a
√

n + b · n +
√

n + a
√

n + b

n +
√

n + a
√

n + b

=
−na− nb− ab

n +
√

n + a
√

n + b

=
−a− b− ab

n

1 +
√

1 + a
n

√
1 + b

n

= −
(

a

2
+

b

2

)

(d) lim
n→∞

(−1)n√n sin(nn)
n + 1

lim
n→∞

(−1)n√n sin(nn)
n + 1

≤ lim
n→∞

√
n

n + 1
= 0.

(e) lim
n→∞

an − bn

an + bn

lim
n→∞

an − bn

an + bn
=





0 if a = b 6= 0
1 if |a| > |b|
−1 if |a| < |b|
undefined if a = b = 0

(f) lim
n→∞ncn = 0, |c| < 1

(g) lim
n→∞

2n2

n!
= ∞

(h) a1 =
√

2 and an+1 =
√

2an. Find lim
n→∞ an

Let ` = lim an, then lim
√

2an =
√

2`. But lim
√

2an = lim an, so

` =
√

2`

`2 = 2`

`(`− 2) = 0

Thus, ` = 0 or ` = 2. Since an is increasing, the limit must be 2.
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2. Decide whether each of the following infinite series is convergent or divergent. What test did
you use?

(a)
∞∑

n=1

sinnθ

n2

Since sin(nθ) ≤ 1, sin nθ
n2 , 1

n2 , so this series converges by the Comparison Test.

(b)
∞∑

n=1

(−1)n log n

n

Since lim log n
n = 0, by the Alternating Series Test this series converges.

(c)
∞∑

n=2

1
3
√

n2 − 1

By the Comparison Test with 1/n2/3 this diverges.

(d)
∞∑

n=1

n2

n!
By the Ratio Test

lim
n→∞

∣∣∣∣
an+1

an

∣∣∣∣ = lim
n→∞

(n + 1)2

(n + 1)!
n!
n2

= lim
n→∞

n + 1
n2

= 0

the series converges. We can compute this sum if we recall that
∑∞

n=0
1
n! = e.

∞∑

n=1

n2

n!
=

∞∑

n=1

n

(n− 1)!

=
∞∑

n=0

n + 1
n!

=
∞∑

n=0

1
n!

+
∞∑

n=0

n

n!

=
∞∑

n=0

1
n!

+
∞∑

n=1

1
(n− 1)!

=
∞∑

n=0

1
n!

+
∞∑

n=0

1
n!

= 2e

(e)
∞∑

n=1

log n

n

For n > 3, log n > 1 so log n
n > 1

n and this diverges by the Comparison Test.

(f)
∞∑

n=2

1
log n

log n < n for all n, so 1
log n > 1

n and this diverges by the Comparison Test.

(g)
∞∑

n=2

1
(log n)k

, k < n

The natural logarithm grows more slowly than any power of n. Therefore, eventually,
(log n)k < n, which will force the series to diverge by the Comparison Test with

∑ 1
n .
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(h)
∞∑

n=1

1
(log n)n

Use the Root Test and lim
n→∞ a1/n

n = lim
n→∞

1
log n

= 0, so this series converges.

(i)
∞∑

n=1

(−1)n 1
(log n)n

This converges by the Alternating Series Test.

(j)
∞∑

n=1

n2

n3 + 1

Diverges by the Limit Comparison Test with
∑ 1

n .

(k)
∞∑

n=1

sin
1
n

Use the Limit Comparison Test with
∑ 1

n .

lim
n→∞

sin( 1
n)

1
n

= lim
x→0

sinx

x
= 1 < ∞.

Thus, this series diverges.

(l)
∞∑

n=1

1
n2(log n)

By the Comparison Test with
∑ 1

n2 we have n2 log n > n2, so 1
n2 log n

< 1
n2 and it

converges.

(m)
∞∑

n=1

1
n1+1/n

Diverges, but grows slowly.
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