SERIES

October 02, 2006

1. Determine if each of the following sequences converges or diverges. Find the limit if requested.
(a) $\lim _{n \rightarrow \infty} \frac{n!}{n^{n}}=0$
(b) Verify that $\lim _{n \rightarrow \infty} \sqrt[n]{a^{n}+b^{n}}=\max (a, b)$

Whichever is larger, a or b will dominate the sum $a^{n}+b^{n}$.
(c) $\lim _{n \rightarrow \infty} n-\sqrt{n+a} \sqrt{n+b}$

$$
\begin{aligned}
\lim _{n \rightarrow \infty} n-\sqrt{n+a} \sqrt{n+b} & =\lim _{n \rightarrow \infty} n-\sqrt{n+a} \sqrt{n+b} \cdot \frac{n+\sqrt{n+a} \sqrt{n+b}}{n+\sqrt{n+a} \sqrt{n+b}} \\
& =\frac{-n a-n b-a b}{n+\sqrt{n+a} \sqrt{n+b}} \\
& =\frac{-a-b-\frac{a b}{n}}{1+\sqrt{1+\frac{a}{n}} \sqrt{1+\frac{b}{n}}} \\
& =-\left(\frac{a}{2}+\frac{b}{2}\right)
\end{aligned}
$$

(d) $\lim _{n \rightarrow \infty} \frac{(-1)^{n} \sqrt{n} \sin \left(n^{n}\right)}{n+1}$

$$
\lim _{n \rightarrow \infty} \frac{(-1)^{n} \sqrt{n} \sin \left(n^{n}\right)}{n+1} \leq \lim _{n \rightarrow \infty} \frac{\sqrt{n}}{n+1}=0 .
$$

(e) $\lim _{n \rightarrow \infty} \frac{a^{n}-b^{n}}{a^{n}+b^{n}}$

$$
\lim _{n \rightarrow \infty} \frac{a^{n}-b^{n}}{a^{n}+b^{n}}= \begin{cases}0 & \text { if } a=b \neq 0 \\ 1 & \text { if }|a|>|b| \\ -1 & \text { if }|a|<|b| \\ \text { undefined } & \text { if } a=b=0\end{cases}
$$

(f) $\lim _{n \rightarrow \infty} n c^{n}=0,|c|<1$
(g) $\lim _{n \rightarrow \infty} \frac{2^{n^{2}}}{n!}=\infty$
(h) $a_{1}=\sqrt{2}$ and $a_{n+1}=\sqrt{2 a_{n}}$. Find $\lim _{n \rightarrow \infty} a_{n}$

Let $\ell=\lim a_{n}$, then $\lim \sqrt{2 a_{n}}=\sqrt{2 \ell}$. But $\lim \sqrt{2 a_{n}}=\lim a_{n}$, so

$$
\begin{aligned}
\ell & =\sqrt{2 \ell} \\
\ell^{2} & =2 \ell \\
\ell(\ell-2) & =0
\end{aligned}
$$

Thus, $\ell=0$ or $\ell=2$. Since a_{n} is increasing, the limit must be 2 .
2. Decide whether each of the following infinite series is convergent or divergent. What test did you use?
(a) $\sum_{n=1}^{\infty} \frac{\sin n \theta}{n^{2}}$

Since $\sin (n \theta) \leq 1, \frac{\sin n \theta}{n^{2}}, \frac{1}{n^{2}}$, so this series converges by the Comparison Test.
(b) $\sum_{n=1}^{\infty}(-1)^{n} \frac{\log n}{n}$

Since $\lim \frac{\log n}{n}=0$, by the Alternating Series Test this series converges.
(c) $\sum_{n=2}^{\infty} \frac{1}{\sqrt[3]{n^{2}-1}}$

By the Comparison Test with $1 / n^{2 / 3}$ this diverges.
(d) $\sum_{n=1}^{\infty} \frac{n^{2}}{n!}$ By the Ratio Test

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{(n+1)!} \frac{n!}{n^{2}}=\lim _{n \rightarrow \infty} \frac{n+1}{n^{2}}=0
$$

the series converges. We can compute this sum if we recall that $\sum_{n=0}^{\infty} \frac{1}{n!}=e$.

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{n^{2}}{n!} & =\sum_{n=1}^{\infty} \frac{n}{(n-1)!} \\
& =\sum_{n=0}^{\infty} \frac{n+1}{n!}=\sum_{n=0}^{\infty} \frac{1}{n!}+\sum_{n=0}^{\infty} \frac{n}{n!} \\
& =\sum_{n=0}^{\infty} \frac{1}{n!}+\sum_{n=1}^{\infty} \frac{1}{(n-1)!}=\sum_{n=0}^{\infty} \frac{1}{n!}+\sum_{n=0}^{\infty} \frac{1}{n!}=2 e
\end{aligned}
$$

(e) $\sum_{n=1}^{\infty} \frac{\log n}{n}$

For $n>3, \log n>1$ so $\frac{\log n}{n}>\frac{1}{n}$ and this diverges by the Comparison Test.
(f) $\sum_{n=2}^{\infty} \frac{1}{\log n}$
$\log n<n$ for all n, so $\frac{1}{\log n}>\frac{1}{n}$ and this diverges by the Comparison Test.
(g) $\sum_{n=2}^{\infty} \frac{1}{(\log n)^{k}}, k<n$

The natural logarithm grows more slowly than any power of n. Therefore, eventually, $(\log n)^{k}<n$, which will force the series to diverge by the Comparison Test with $\sum \frac{1}{n}$.
(h) $\sum_{n=1}^{\infty} \frac{1}{(\log n)^{n}}$

Use the Root Test and $\lim _{n \rightarrow \infty} a_{n}^{1 / n}=\lim _{n \rightarrow \infty} \frac{1}{\log n}=0$, so this series converges.
(i) $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{(\log n)^{n}}$

This converges by the Alternating Series Test.
(j) $\sum_{n=1}^{\infty} \frac{n^{2}}{n^{3}+1}$

Diverges by the Limit Comparison Test with $\sum \frac{1}{n}$.
(k) $\sum_{n=1}^{\infty} \sin \frac{1}{n}$

Use the Limit Comparison Test with $\sum \frac{1}{n}$.

$$
\lim _{n \rightarrow \infty} \frac{\sin \left(\frac{1}{n}\right)}{\frac{1}{n}}=\lim _{x \rightarrow 0} \frac{\sin x}{x}=1<\infty .
$$

Thus, this series diverges.
(l) $\sum_{n=1}^{\infty} \frac{1}{n^{2}(\log n)}$

By the Comparison Test with $\sum \frac{1}{n^{2}}$ we have $n^{2} \log n>n^{2}$, so $\frac{1}{n^{2} \log n}<\frac{1}{n^{2}}$ and it converges.
(m) $\sum_{n=1}^{\infty} \frac{1}{n^{1+1 / n}}$

Diverges, but grows slowly.

