Questions for Final Exam MATH 6101/8101 - Fall 2006 20-November-2006

1. Prove that $3 + 11 + \dots + (8n - 5) = 4n^2 - n$ for all natural numbers $n \in \mathbb{N}$.

- 2. Prove that $(2n+1) + (2n+3) + (2n+5) + \dots + (4n-1) = 3n^2$ for all natural numbers $n \in \mathbb{N}$.
- 3. For each $n \in \mathbb{N}$, let P_n denote the assertion " $n^2 + 5n + 1$ is an even integer."
 - (a) Prove that P_{n+1} is true whenever P_n is true.
 - (b) For which n is P_n actually true? What is the moral of this exercise?
- 4. If $A \subseteq \mathbb{R}$ we define the maximum element of A as the largest element in A; i.e.,

 $\max\{A\} = x$ means that $x \in A$ and if $a \in A$ then $a \leq x$.

Let S be a nonempty subset of \mathbb{R} that is bounded above. Prove that if lub S belongs to S, then $lub S = max\{S\}$.

- 5. Let S and T be nonempty bounded subsets of \mathbb{R} .
 - (a) Prove that if $S \subseteq T$, then $\operatorname{glb} T \leq \operatorname{glb} S \leq \operatorname{lub} S \leq \operatorname{lub} T$.
 - (b) Prove that $lub(S \cup T) = max\{lub S, lub T\}$. Note, **do not** assume that $S \subseteq T$.
- 6. (a) Give an example of a bounded sequence or real numbers that does not converge.
 - (b) Give an example of a bounded sequence of rational numbers that converges to an irrational number.
 - (c) Give an example of a bounded sequence of irrational numbers that converges to a rational number.
 - (d) Give an example of a bounded sequence of irrational numbers that converges to an irrational number.

7. Let $x_1 = 1$ and $x_{n+1} = \frac{x_n^2 + 2}{2x_n}$ for $n \ge 1$. Assume that $\{x_n\}$ converges and find the limit.

- 8. (a) Prove that if A and B are countable sets then $A \times B$ is countable.
 - (b) Prove that if A, B, and C are countable sets, then $A \times B \times C$ is countable.

(c) Prove that if
$$A_i$$
 is a countable set for $i = 1, 2, ..., n$ then $\prod_{i=1}^{n} A_i$ is countable.

(d) Does you proof show that $\prod_{i=1}^{\infty} A_i$ is countable? Is it true?

9. Prove that if $\sum a_n$ is a convergent series of nonnegative numbers and p > 1, then $\sum a_n^p$ converges.

- 10. Let $\{a_n\}$ be a sequence of nonzero real numbers such that the sequence $\{\frac{a_{n+1}}{a_n}\}$ is a constant sequence. Show that $\sum a_n$ is a geometric series.
- 11. (a) Prove that the function $f(x) = kx, k \in \mathbb{R}$, is a continuous function on \mathbb{R} .
 - (b) Prove that the function g(x) = |x| is a continuous function on \mathbb{R} .
- 12. Prove that the function

$$\operatorname{sgn}(x) = \begin{cases} -1 & \text{if } x < 0\\ 0 & \text{if } x = 0\\ 1 & \text{if } x > 0 \end{cases}$$

is not continuous at $x_0 = 0$.

- 13. Suppose that $f \colon \mathbb{R} \to \mathbb{R}$ and that f(a)f(b) < 0 for some $a, b \in \mathbb{R}$. Prove that there is an x between a and b such that f(x) = 0.
- 14. Suppose that f is continuous on [0, 2] and the f(0) = f(2). Prove that there exist $x, y \in [0, 2]$ so that |y x| = 1 and f(x) = f(y). HINT: Consider the function g(x) = f(x + 1) - f(x) on [0, 1].