Questions for Final Exam
 MATH 6101/8101 - Fall 2006

20-November-2006

1. Prove that $3+11+\cdots+(8 n-5)=4 n^{2}-n$ for all natural numbers $n \in \mathbb{N}$.
2. Prove that $(2 n+1)+(2 n+3)+(2 n+5)+\cdots+(4 n-1)=3 n^{2}$ for all natural numbers $n \in \mathbb{N}$.
3. For each $n \in \mathbb{N}$, let P_{n} denote the assertion " $n^{2}+5 n+1$ is an even integer."
(a) Prove that P_{n+1} is true whenever P_{n} is true.
(b) For which n is P_{n} actually true? What is the moral of this exercise?
4. If $A \subseteq \mathbb{R}$ we define the maximum element of A as the largest element in A; i.e.,

$$
\max \{A\}=x \text { means that } x \in A \text { and if } a \in A \text { then } a \leq x .
$$

Let S be a nonempty subset of \mathbb{R} that is bounded above. Prove that if lub S belongs to S, then $\operatorname{lub} S=\max \{S\}$.
5. Let S and T be nonempty bounded subsets of \mathbb{R}.
(a) Prove that if $S \subseteq T$, then $\operatorname{glb} T \leq \operatorname{glb} S \leq \operatorname{lub} S \leq \operatorname{lub} T$.
(b) Prove that $\operatorname{lub}(S \cup T)=\max \{\operatorname{lub} S$, lub $T\}$. Note, do not assume that $S \subseteq T$.
6. (a) Give an example of a bounded sequence or real numbers that does not converge.
(b) Give an example of a bounded sequence of rational numbers that converges to an irrational number.
(c) Give an example of a bounded sequence of irrational numbers that converges to a rational number.
(d) Give an example of a bounded sequence of irrational numbers that converges to an irrational number.
7. Let $x_{1}=1$ and $x_{n+1}=\frac{x_{n}^{2}+2}{2 x_{n}}$ for $n \geq 1$. Assume that $\left\{x_{n}\right\}$ converges and find the limit.
8. (a) Prove that if A and B are countable sets then $A \times B$ is countable.
(b) Prove that if A, B, and C are countable sets, then $A \times B \times C$ is countable.
(c) Prove that if A_{i} is a countable set for $i=1,2, \ldots, n$ then $\prod_{i=1}^{n} A_{i}$ is countable.
(d) Does you proof show that $\prod_{i=1}^{\infty} A_{i}$ is countable? Is it true?
9. Prove that if $\sum a_{n}$ is a convergent series of nonnegative numbers and $p>1$, then $\sum a_{n}^{p}$ converges.
10. Let $\left\{a_{n}\right\}$ be a sequence of nonzero real numbers such that the sequence $\left\{\frac{a_{n+1}}{a_{n}}\right\}$ is a constant sequence. Show that $\sum a_{n}$ is a geometric series.
11. (a) Prove that the function $f(x)=k x, k \in \mathbb{R}$, is a continuous function on \mathbb{R}.
(b) Prove that the function $g(x)=|x|$ is a continuous function on \mathbb{R}.
12. Prove that the function

$$
\operatorname{sgn}(x)= \begin{cases}-1 & \text { if } x<0 \\ 0 & \text { if } x=0 \\ 1 & \text { if } x>0\end{cases}
$$

is not continuous at $x_{0}=0$.
13. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ and that $f(a) f(b)<0$ for some $a, b \in \mathbb{R}$. Prove that there is an x between a and b such that $f(x)=0$.
14. Suppose that f is continuous on $[0,2]$ and the $f(0)=f(2)$. Prove that there exist $x, y \in[0,2]$ so that $|y-x|=1$ and $f(x)=f(y)$.
Hint: Consider the function $g(x)=f(x+1)-f(x)$ on $[0,1]$.

