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1. Using the Trichotomy Law prove that if a and b are real numbers then one and only
one of the following is possible: a < b, a = b, or a > b.

Since a and b are real numbers then a− b is a real number. By the Trichotomy Law we
know that a− b < 0, a− b = 0 or a− b > 0. These immediately translate into a < b,
a = b or a > b.

2. We define the absolute value of a real number a by

|a| =
{

a, a ≥ 0

−a, a ≤ 0

Prove the following:

(a) |a + b| ≤ |a|+ |b|.
We will each of these by cases. The case where either ab = 0 is not interesting,
so we will leave it. We must have a < 0 or a > 0 and b < 0 or b > 0. Thus, we
are left with 4 cases to check: (1) a > 0 and b > 0, (2) a < 0 and b > 0, (3) a > 0
and b < 0, and (4) a < 0 and b < 0.

In case (1) since both a and b are positive, a + b is positive and |a| = a, |b| = b,
and |a+ b| = a+ b. Therefore |a+ b| = a+ b = |a|+ |b| and the statement is true.

In case (2), since a < 0, |a| = −a. To show that |a + b| ≤ |a|+ |b| we must show
that

|a|+ |b| − |a + b| ≥ 0.

Either a + b ≤ 0 or a + b ≥ 0.

If a + b ≥ 0

|a|+ |b| − |a + b| = (−a) + b− (a + b)

= −2a > 0 since − a > 0

If a + b ≤ 0

|a|+ |b| − |a + b| = (−a) + b− (−(a + b))

= (−a) + b + a + b))

= 2b > 0 since b > 0

Thus |a + b| ≤ |a|+ |b| in this case.

Case (3) is similar since the roles of a and b are reversed.
Case (4) is similar to Case (1).
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(b) |xy| = |x| · |y|.
Here we break the proof up into the same cases: (1) x > 0, y > 0, (2) x < 0, y > 0,
(3) x > 0, y < 0, and (4) x < 0, y < 0.

In Case (1) since x > 0 and y > 0, then xy > 0, and it easily follows that
|xy| = xy = |x| · |y|.
In Case (2) since x < 0 and y > 0, then xy < 0, and it easily follows that
|xy| = −(xy) = (−x)y = |x| · |y|.
In Case (3) since x > 0 and y < 0, then xy < 0, and it easily follows that
|xy| = −(xy) = x(−y) = |x| · |y|.
In Case (4) since x < 0 and y < 0, then xy > 0, and it follows that |xy| = xy =
(−x)(−y) = |x| · |y|.

(c)

∣∣∣∣
1

x

∣∣∣∣ =
1

|x| , if x 6= 0.

Since x 6= 0, we know that
1

x
is its multiplicative inverse, so

1 =

∣∣∣∣x ·
1

x

∣∣∣∣ = |x| ·
∣∣∣∣
1

x

∣∣∣∣ .

Solving gives us that

∣∣∣∣
1

x

∣∣∣∣ =
1

|x| .

(d)

∣∣∣∣
x

y

∣∣∣∣ =
|x|
|y| , if y 6= 0.

Use the above again and the fact that
x

y
= x · 1

y
:

∣∣∣∣
x

y

∣∣∣∣ =

∣∣∣∣x ·
1

y

∣∣∣∣ = |x| ·
∣∣∣∣
1

y

∣∣∣∣ = |x| · 1

|y| =
|x|
|y| .

(e) |x− y| ≤ |x|+ |y|.
Solution Method I: The eloquent solution uses the results of Part 2a to show
this:

|x− y| = |x + (−y)| ≤ |x|+ | − y| = |x|+ |y|,
where the inequality comes from 2a.

Solution Method II: You can do this one much like the first one. Break it into
cases and do them one at a time. Cases: (1) x > 0, y > 0, (2) x < 0, y > 0, (3)
x > 0, y < 0, and (4) x < 0, y < 0.

We need to show in each case that |x|+ |y| − |x− y| ≥ 0.

In Case (1) we have to deal with two cases x− y ≤ 0 and x− y ≥ 0. If x− y ≥ 0,
then |x−y| = x−y and |x|+ |y|− |x−y| = x+y− (x−y) = 2y > 0. If x−y ≤ 0,
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then |x− y| = −(x− y) = y−x and |x|+ |y|− |x− y| = x+ y− (y−x) = 2x > 0.
Thus, this is true in Case (1).

Case (2): In this case |x| = −x and |y| = y. Again, we have to consider two
cases: x− y ≤ 0 and x− y ≥ 0. However, note that if x < 0 and y > 0, it cannot
happen that x − y ≥ 0. So, x − y ≤ 0, then |x − y| = −(x − y) = y − x and
|x|+ |y| − |x− y| = −x + y − (y − x) = 0 ≥ 0. Thus, this is true in Case (2).

Case (3): In this case |x| = x and |y| = −y. Again, we have to consider two cases:
x− y ≤ 0 and x− y ≥ 0. Again, as in Case (2) it is impossible for x− y ≤ 0. So,
x− y ≥ 0, then |x− y| = x− y and |x|+ |y| − |x− y| = x− y − (x− y) = 0 ≥ 0.
Thus, this is true in Case (3).

For Case (4), |x| = −x and |y| = −y. If x − y ≥ 0, then |x − y| = x − y
and |x| + |y| − |x − y| = −x + (−y) − (x − y) = −2x > 0. If x − y ≤ 0, then
|x−y| = −(x−y) = y−x and |x|+ |y|−|x−y| = −x+(−y)−(y−x) = −2y ≥ 0.

Thus, this is true.

(f) |x| − |y| ≤ |x− y|.
Solution Method I: There is an eloquent solution here as well.

|x| = |x− y + y|
≤ |x− y|+ |y|

|x| − |y| ≤ |x− y|

Solution Method II: You can also break it into cases and do them one at a time.
Cases: (1) x > 0, y > 0, (2) x < 0, y > 0, (3) x > 0, y < 0, and (4) x < 0, y < 0.

We need to show in each case that |x− y| − (|x| − |y|) = |x− y| − |x|+ |y| ≥ 0.

In Case (1) we have to deal with two cases x− y ≤ 0 and x− y ≥ 0. If x− y ≥ 0,
then |x− y| = x− y and |x− y| − |x|+ |y| = x− y−x+ y = 2x > 0. If x− y ≤ 0,
then |x−y| = −(x−y) = y−x and |x−y|−|x|+|y| = y−x−x+y = 2(y−x) > 0.
Thus, this is true in Case (1).

Case (2): In this case |x| = −x and |y| = y. This time it is possible for x− y ≤ 0
but impossible for x− y ≥ 0. If x− y ≤ 0, then |x− y| = −(x− y) = y − x and
|x− y| − |x|+ |y| = y − x + x + y = 2y > 0. Thus, this is true in Case (2),

Case (3): In this case |x| = x and |y| = −y. This time it is possible for x− y ≥ 0
but impossible for x−y ≤ 0. If x−y ≥ 0, then |x−y| = x−y and |x−y|−|x|+|y| =
x− y − x− y = −2y ≥ 0. Thus, this is true in Case (3).

For Case (4), |x| = −x and |y| = −y. If x − y ≥ 0, then |x − y| = x − y and
|x − y| − |x| + |y| = x − y − (−x) + (−y) = 2(x − y) > 0. If x − y ≤ 0, then
|x− y| = −(x− y) = y− x and |x− y| − |x|+ |y| = y− x− (−x) + (−y) = 0 ≥ 0.

Thus, this is true.
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3. The fact that a2 ≥ 0 for all real numbers a has tremendous implications. The most
widely used of all inequalities is the Schwarz inequality:

x1y1 + x2y2 ≤
√

x2
1 + x2

2

√
y2

1 + y2
2

Do ONE of the following:

(a) Prove the Schwarz inequality by using 2xy ≤ x2 + y2 (how is this derived?) with

x =
xi√

x2
1 + x2

2

, y =
yi√

y2
1 + y2

2

first for i = 1 and then for i = 2.

The first inequality comes from the fact that 0 ≤ (x − y)2 = x2 − 2xy + y2, so
2xy ≤ x2 + y2. Thus, doing the algebra

2xy ≤ x2 + y2

2
x1√

x2
1 + x2

2

y1√
y2

1 + y2
2

≤
(

x1√
x2

1 + x2
2

)2

+

(
y1√

y2
1 + y2

2

)2

2
x1y1√

x2
1 + x2

2

√
y2

1 + y2
2

≤
(

x1√
x2

1 + x2
2

)2

+

(
y1√

y2
1 + y2

2

)2

2
x1y1√

x2
1 + x2

2

√
y2

1 + y2
2

≤ x2
1

x2
1 + x2

2

+
y2

1

y2
1 + y2

2

and

2
x2y2√

x2
1 + x2

2

√
y2

1 + y2
2

≤ x2
2

x2
1 + x2

2

+
y2

2

y2
1 + y2

2

Adding these

2
x1y1 + x2y2√

x2
1 + x2

2

√
y2

1 + y2
2

≤ x2
1 + x2

2

x2
1 + x2

2

+
y2

1 + y2
2

y2
1 + y2

2

= 2

x1y1 + x2y2√
x2

1 + x2
2

√
y2

1 + y2
2

≤ 1

x1y1 + x2y2 ≤
√

x2
1 + x2

2

√
y2

1 + y2
2

(b) Prove the Schwarz inequality by first proving that

(x2
1 + x2

2)(y
2
1 + y2

2) = (x1y1 + x2y2)
2 + (x1y2 − x2y1)

2.

First,
(x2

1 + x2
2)(y

2
1 + y2

2) = x2
1y

2
1 + x2

2y
2
1 + x2

1y
2
2 + x2

2y
2
2.
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Now,

(x1y1 + x2y2)
2 + (x1y2 − x2y1)

2 = x2
1y

2
1 + 2x1y1x2y2 + x2

2y
2
2 + x2

1y
2
2 − 2x1y1x2y2 + x2

2y
2
1

= x2
1y

2
1 + x2

2y
2
1 + x2

1y
2
2 + x2

2y
2
2

= (x2
1 + x2

2)(y
2
1 + y2

2)

(x2
1 + x2

2)(y
2
1 + y2

2) = (x1y1 + x2y2)
2 + (x1y2 − x2y1)

2

≥ (x1y1 + x2y2)
2

Thus,√
(x2

1 + x2
2)

√
(y2

1 + y2
2) ≥ x1y1 + x2y2

and we are done.

4. Prove the following formulæ by induction

(a) 12 + 22 + · · ·+ n2 =
n∑

i=1

i2 =
n(n + 1)(2n + 1)

6

First, check it for n = 1 and we have 12 = 1·2·3
6

= 1, so it is true for n = 1. Now,
assume it is true for k. We must prove that it is true for k + 1.

k+1∑
i=1

i2 =
k∑

i=1

i2 + (k + 1)2

=
k(k + 1)(2k + 1)

6
+ (k + 1)2

=
k(k + 1)(2k + 1) + 6(k + 1)2

6
=

(k + 1)[k(2k + 1) + 6(k + 1)]

6

=
(k + 1)[2k2 + 7k + 6)]

6
=

(k + 1)(k + 2)(2k + 3)

6

which is what we needed, and we are done.

(b) 13 + 23 + · · ·+ n3 = (1 + 2 + · · ·+ n)2

First, check it for n = 1 and we have 13 = (1)2, so it is true for n = 1. Now,
assume it is true for k. We must prove that it is true for k + 1.
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13 + 23 + · · ·+ (k + 1)3 = 13 + 23 + · · ·+ k3 + (k + 1)3

= (1 + 2 + · · ·+ k)2 + (k + 1)3

=

(
k(k + 1)

2

)2

+ (k + 1)3 =
k2(k + 1)2 + 4(k + 1)3

4

=
(k + 1)2(k2 + 4k + 4)

4
=

(k + 1)2(k + 2)2

4

=

(
(k + 1)(k + 2)

2

)2

= (1 + 2 + · · ·+ (k + 1))2

which is what we needed, and we are done.

5. Find a formula for

(a)
n∑

i=1

(2i− 1) = 1 + 3 + 5 + 7 + · · ·+ (2n− 1)

2n∑

k=1

k =
n∑

k=1

(2k − 1) +
n∑

k=1

2k

(2n)(2n + 1)

2
=

n∑

k=1

(2k − 1) + 2
n∑

k=1

k

n∑

k=1

(2k − 1) = 2n2 + n− 2
n(n + 1)

2

= 2n2 + n− (n2 + n) = n2

(b)
n∑

i=1

(2i− 1)2 = 12 + 32 + 52 + 72 + · · ·+ (2n− 1)2

Solution Method I:

2n∑

k=1

k2 =
n∑

k=1

(2k − 1)2 +
n∑

k=1

(2k)2

n∑

k=1

(2k − 1)2 =
(2n)(2n + 1)(4n + 1)

6
− 4

n∑

k=1

k2

=
(2n)(2n + 1)(4n + 1)

6
− 4n(n + 1)(2n + 1)

6

=
2n(2n + 1)(2n− 1)

6
=

4n3 − n

3
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Solution Method II:

n∑

k=1

(2k − 1)2 =
n∑

k=1

(4k2 − 4k + 1)

=
n∑

k=1

4k2 −
n∑

k=1

4k +
n∑

k=1

1

= 4
n∑

k=1

k2 − 4
n∑

k=1

k + n

= 4

(
n(n + 1)(2n + 1)

6

)
− 4

(
n(n + 1)

2

)
+ n

=
2n(n + 1)(2n + 1)

3
− 2n2 − n

=
n(2n + 1)(2n− 1)

3
=

4n3 − n

3

6. Use the given method to find:

(a) 13 + 23 + 33 + 43 + · · ·+ n3

Following the example from the homework sheet we note that (k + 1)4 − k4 =
4k3 + 6k2 + 4k + 1. Then proceeding as the example we would have:

(n + 1)4 − 1 = 4
n∑

k=1

n3 + 6
n∑

k=1

n2 + 4
n∑

k=1

n + n

4
n∑

k=1

n3 = (n + 1)4 − 1− 6
n(n + 1)(2n + 1)

6
− 4

n(n + 1)

2
− n

4
n∑

k=1

n3 = (n + 1)4 − 1− n(n + 1)(2n + 1)− 2n(n + 1)− n

4
n∑

k=1

n3 = n4 + 2n3 + n2

n∑

k=1

n3 =
n2(n + 1)2

4

(b) 14 + 24 + 34 + 44 + · · ·+ n4
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First, (k + 1)5 − k5 = 5k4 + 10k3 + 10k2 + 5k + 1. So,

(n + 1)5 − 1 = 5
n∑

k=1

n4 + 10
n∑

k=1

n3 + 10
n∑

k=1

n2 + 5
n∑

k=1

n + n

5
n∑

k=1

n4 = (n + 1)5 − 1− 10
n2(n + 1)2

4
− 10

n(n + 1)(2n + 1)

6
− 5

n(n + 1)

2
− n

5
n∑

k=1

n4 = n5 +
5n4

2
+

5n3

3
− n

6

5
n∑

k=1

n4 =
n(2n + 1)(n + 1)(3n2 + 3n− 1)

6

n∑

k=1

n4 =
n(2n + 1)(n + 1)(3n2 + 3n− 1)

30

(c)
1

1 · 2 +
1

2 · 3 + · · ·+ 1

n(n + 1)

For this one you need to realize that each term is of the form
1

k · (k + 1)
and this

can be rewritten as
1

k · (k + 1)
=

1

k
− 1

k + 1
. Thus,

1

1 · 2 +
1

2 · 3 + · · ·+ 1

n(n + 1)
=

(
1

1
− 1

2

)
+

(
1

2
− 1

3

)
+ · · ·+

(
1

n
− 1

n + 1

)

= 1− 1

n + 1
=

n

n + 1

This is a classic example of what is known as a telescoping sum.
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