MATH 6101-090
 ASSIGNMENT 1-SOLUTIONS

September 11, 2006

1. Using the Trichotomy Law prove that if a and b are real numbers then one and only one of the following is possible: $a<b, a=b$, or $a>b$.

Since a and b are real numbers then $a-b$ is a real number. By the Trichotomy Law we know that $a-b<0, a-b=0$ or $a-b>0$. These immediately translate into $a<b$, $a=b$ or $a>b$.
2. We define the absolute value of a real number a by

$$
|a|= \begin{cases}a, & a \geq 0 \\ -a, & a \leq 0\end{cases}
$$

Prove the following:
(a) $|a+b| \leq|a|+|b|$.

We will each of these by cases. The case where either $a b=0$ is not interesting, so we will leave it. We must have $a<0$ or $a>0$ and $b<0$ or $b>0$. Thus, we are left with 4 cases to check: (1) $a>0$ and $b>0$, (2) $a<0$ and $b>0$, (3) $a>0$ and $b<0$, and (4) $a<0$ and $b<0$.
In case (1) since both a and b are positive, $a+b$ is positive and $|a|=a,|b|=b$, and $|a+b|=a+b$. Therefore $|a+b|=a+b=|a|+|b|$ and the statement is true. In case (2), since $a<0,|a|=-a$. To show that $|a+b| \leq|a|+|b|$ we must show that

$$
|a|+|b|-|a+b| \geq 0
$$

Either $a+b \leq 0$ or $a+b \geq 0$.
If $a+b \geq 0$

$$
\begin{aligned}
|a|+|b|-|a+b| & =(-a)+b-(a+b) \\
& =-2 a>0 \text { since }-a>0
\end{aligned}
$$

If $a+b \leq 0$

$$
\begin{aligned}
|a|+|b|-|a+b| & =(-a)+b-(-(a+b)) \\
& =(-a)+b+a+b)) \\
& =2 b>0 \text { since } b>0
\end{aligned}
$$

Thus $|a+b| \leq|a|+|b|$ in this case.
Case (3) is similar since the roles of a and b are reversed.
Case (4) is similar to Case (1).
(b) $|x y|=|x| \cdot|y|$.

Here we break the proof up into the same cases: (1) $x>0, y>0$, (2) $x<0, y>0$, (3) $x>0, y<0$, and (4) $x<0, y<0$.

In Case (1) since $x>0$ and $y>0$, then $x y>0$, and it easily follows that $|x y|=x y=|x| \cdot|y|$.
In Case (2) since $x<0$ and $y>0$, then $x y<0$, and it easily follows that $|x y|=-(x y)=(-x) y=|x| \cdot|y|$.
In Case (3) since $x>0$ and $y<0$, then $x y<0$, and it easily follows that $|x y|=-(x y)=x(-y)=|x| \cdot|y|$.
In Case (4) since $x<0$ and $y<0$, then $x y>0$, and it follows that $|x y|=x y=$ $(-x)(-y)=|x| \cdot|y|$.
(c) $\left|\frac{1}{x}\right|=\frac{1}{|x|}$, if $x \neq 0$.

Since $x \neq 0$, we know that $\frac{1}{x}$ is its multiplicative inverse, so

$$
1=\left|x \cdot \frac{1}{x}\right|=|x| \cdot\left|\frac{1}{x}\right| .
$$

Solving gives us that $\left|\frac{1}{x}\right|=\frac{1}{|x|}$.
(d) $\left|\frac{x}{y}\right|=\frac{|x|}{|y|}$, if $y \neq 0$.

Use the above again and the fact that $\frac{x}{y}=x \cdot \frac{1}{y}$:

$$
\left|\frac{x}{y}\right|=\left|x \cdot \frac{1}{y}\right|=|x| \cdot\left|\frac{1}{y}\right|=|x| \cdot \frac{1}{|y|}=\frac{|x|}{|y|} .
$$

(e) $|x-y| \leq|x|+|y|$.

Solution Method I: The eloquent solution uses the results of Part 2a to show this:

$$
|x-y|=|x+(-y)| \leq|x|+|-y|=|x|+|y|,
$$

where the inequality comes from 2 a .
Solution Method II: You can do this one much like the first one. Break it into cases and do them one at a time. Cases: (1) $x>0, y>0$, (2) $x<0, y>0$, (3) $x>0, y<0$, and (4) $x<0, y<0$.
We need to show in each case that $|x|+|y|-|x-y| \geq 0$.
In Case (1) we have to deal with two cases $x-y \leq 0$ and $x-y \geq 0$. If $x-y \geq 0$, then $|x-y|=x-y$ and $|x|+|y|-|x-y|=x+y-(x-y)=2 y>0$. If $x-y \leq 0$,
then $|x-y|=-(x-y)=y-x$ and $|x|+|y|-|x-y|=x+y-(y-x)=2 x>0$. Thus, this is true in Case (1).
Case (2): In this case $|x|=-x$ and $|y|=y$. Again, we have to consider two cases: $x-y \leq 0$ and $x-y \geq 0$. However, note that if $x<0$ and $y>0$, it cannot happen that $x-y \geq 0$. So, $x-y \leq 0$, then $|x-y|=-(x-y)=y-x$ and $|x|+|y|-|x-y|=-x+y-(y-x)=0 \geq 0$. Thus, this is true in Case (2).
Case (3): In this case $|x|=x$ and $|y|=-y$. Again, we have to consider two cases: $x-y \leq 0$ and $x-y \geq 0$. Again, as in Case (2) it is impossible for $x-y \leq 0$. So, $x-y \geq 0$, then $|x-y|=x-y$ and $|x|+|y|-|x-y|=x-y-(x-y)=0 \geq 0$. Thus, this is true in Case (3).
For Case (4), $|x|=-x$ and $|y|=-y$. If $x-y \geq 0$, then $|x-y|=x-y$ and $|x|+|y|-|x-y|=-x+(-y)-(x-y)=-2 x>0$. If $x-y \leq 0$, then $|x-y|=-(x-y)=y-x$ and $|x|+|y|-|x-y|=-x+(-y)-(y-x)=-2 y \geq 0$. Thus, this is true.
(f) $|x|-|y| \leq|x-y|$.

Solution Method I: There is an eloquent solution here as well.

$$
\begin{aligned}
|x| & =|x-y+y| \\
& \leq|x-y|+|y| \\
|x|-|y| & \leq|x-y|
\end{aligned}
$$

Solution Method II: You can also break it into cases and do them one at a time. Cases: (1) $x>0, y>0,(2) x<0, y>0$, (3) $x>0, y<0$, and (4) $x<0, y<0$. We need to show in each case that $|x-y|-(|x|-|y|)=|x-y|-|x|+|y| \geq 0$. In Case (1) we have to deal with two cases $x-y \leq 0$ and $x-y \geq 0$. If $x-y \geq 0$, then $|x-y|=x-y$ and $|x-y|-|x|+|y|=x-y-x+y=2 x>0$. If $x-y \leq 0$, then $|x-y|=-(x-y)=y-x$ and $|x-y|-|x|+|y|=y-x-x+y=2(y-x)>0$. Thus, this is true in Case (1).
Case (2): In this case $|x|=-x$ and $|y|=y$. This time it is possible for $x-y \leq 0$ but impossible for $x-y \geq 0$. If $x-y \leq 0$, then $|x-y|=-(x-y)=y-x$ and $|x-y|-|x|+|y|=y-x+x+y=2 y>0$. Thus, this is true in Case (2),
Case (3): In this case $|x|=x$ and $|y|=-y$. This time it is possible for $x-y \geq 0$ but impossible for $x-y \leq 0$. If $x-y \geq 0$, then $|x-y|=x-y$ and $|x-y|-|x|+|y|=$ $x-y-x-y=-2 y \geq 0$. Thus, this is true in Case (3).
For Case (4), $|x|=-x$ and $|y|=-y$. If $x-y \geq 0$, then $|x-y|=x-y$ and $|x-y|-|x|+|y|=x-y-(-x)+(-y)=2(x-y)>0$. If $x-y \leq 0$, then $|x-y|=-(x-y)=y-x$ and $|x-y|-|x|+|y|=y-x-(-x)+(-y)=0 \geq 0$. Thus, this is true.
3. The fact that $a^{2} \geq 0$ for all real numbers a has tremendous implications. The most widely used of all inequalities is the Schwarz inequality:

$$
x_{1} y_{1}+x_{2} y_{2} \leq \sqrt{x_{1}^{2}+x_{2}^{2}} \sqrt{y_{1}^{2}+y_{2}^{2}}
$$

Do ONE of the following:
(a) Prove the Schwarz inequality by using $2 x y \leq x^{2}+y^{2}$ (how is this derived?) with

$$
x=\frac{x_{i}}{\sqrt{x_{1}^{2}+x_{2}^{2}}}, \quad y=\frac{y_{i}}{\sqrt{y_{1}^{2}+y_{2}^{2}}}
$$

first for $i=1$ and then for $i=2$.
The first inequality comes from the fact that $0 \leq(x-y)^{2}=x^{2}-2 x y+y^{2}$, so $2 x y \leq x^{2}+y^{2}$. Thus, doing the algebra

$$
\begin{aligned}
2 x y & \leq x^{2}+y^{2} \\
2 \frac{x_{1}}{\sqrt{x_{1}^{2}+x_{2}^{2}}} \frac{y_{1}}{\sqrt{y_{1}^{2}+y_{2}^{2}}} & \leq\left(\frac{x_{1}}{\sqrt{x_{1}^{2}+x_{2}^{2}}}\right)^{2}+\left(\frac{y_{1}}{\sqrt{y_{1}^{2}+y_{2}^{2}}}\right)^{2} \\
2 \frac{x_{1} y_{1}}{\sqrt{x_{1}^{2}+x_{2}^{2}} \sqrt{y_{1}^{2}+y_{2}^{2}}} & \leq\left(\frac{x_{1}}{\sqrt{x_{1}^{2}+x_{2}^{2}}}\right)^{2}+\left(\frac{y_{1}}{\sqrt{y_{1}^{2}+y_{2}^{2}}}\right)^{2} \\
2 \frac{x_{1} y_{1}}{\sqrt{x_{1}^{2}+x_{2}^{2}} \sqrt{y_{1}^{2}+y_{2}^{2}}} & \leq \frac{x_{1}^{2}}{x_{1}^{2}+x_{2}^{2}}+\frac{y_{1}^{2}}{y_{1}^{2}+y_{2}^{2}} \\
2 \frac{x_{2} y_{2}}{\sqrt{x_{1}^{2}+x_{2}^{2}} \sqrt{y_{1}^{2}+y_{2}^{2}}} & \leq \frac{x_{2}^{2}}{x_{1}^{2}+x_{2}^{2}}+\frac{y_{2}^{2}}{y_{1}^{2}+y_{2}^{2}} \\
2 \frac{x_{1} y_{1}+x_{2} y_{2}}{\sqrt{x_{1}^{2}+x_{2}^{2}} \sqrt{y_{1}^{2}+y_{2}^{2}}} & \leq \frac{x_{1}^{2}+x_{2}^{2}}{x_{1}^{2}+x_{2}^{2}}+\frac{y_{1}^{2}+y_{2}^{2}}{y_{1}^{2}+y_{2}^{2}}=2 \\
\frac{x_{1} y_{1}+x_{2} y_{2}}{\sqrt{x_{1}^{2}+x_{2}^{2}} \sqrt{y_{1}^{2}+y_{2}^{2}}} & \leq 1 \\
x_{1} y_{1}+x_{2} y_{2} & \leq \sqrt{x_{1}^{2}+x_{2}^{2}} \sqrt{y_{1}^{2}+y_{2}^{2}}
\end{aligned}
$$

(b) Prove the Schwarz inequality by first proving that

$$
\left(x_{1}^{2}+x_{2}^{2}\right)\left(y_{1}^{2}+y_{2}^{2}\right)=\left(x_{1} y_{1}+x_{2} y_{2}\right)^{2}+\left(x_{1} y_{2}-x_{2} y_{1}\right)^{2} .
$$

First,

$$
\left(x_{1}^{2}+x_{2}^{2}\right)\left(y_{1}^{2}+y_{2}^{2}\right)=x_{1}^{2} y_{1}^{2}+x_{2}^{2} y_{1}^{2}+x_{1}^{2} y_{2}^{2}+x_{2}^{2} y_{2}^{2}
$$

Now,

$$
\begin{aligned}
\left(x_{1} y_{1}+x_{2} y_{2}\right)^{2}+\left(x_{1} y_{2}-x_{2} y_{1}\right)^{2} & =x_{1}^{2} y_{1}^{2}+2 x_{1} y_{1} x_{2} y_{2}+x_{2}^{2} y_{2}^{2}+x_{1}^{2} y_{2}^{2}-2 x_{1} y_{1} x_{2} y_{2}+x_{2}^{2} y_{1}^{2} \\
& =x_{1}^{2} y_{1}^{2}+x_{2}^{2} y_{1}^{2}+x_{1}^{2} y_{2}^{2}+x_{2}^{2} y_{2}^{2} \\
& =\left(x_{1}^{2}+x_{2}^{2}\right)\left(y_{1}^{2}+y_{2}^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
\left(x_{1}^{2}+x_{2}^{2}\right)\left(y_{1}^{2}+y_{2}^{2}\right) & =\left(x_{1} y_{1}+x_{2} y_{2}\right)^{2}+\left(x_{1} y_{2}-x_{2} y_{1}\right)^{2} \\
& \geq\left(x_{1} y_{1}+x_{2} y_{2}\right)^{2}
\end{aligned}
$$

Thus,

$$
\sqrt{\left(x_{1}^{2}+x_{2}^{2}\right)} \sqrt{\left(y_{1}^{2}+y_{2}^{2}\right)} \geq x_{1} y_{1}+x_{2} y_{2}
$$

and we are done.
4. Prove the following formulæ by induction
(a) $1^{2}+2^{2}+\cdots+n^{2}=\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$

First, check it for $n=1$ and we have $1^{2}=\frac{1 \cdot 2 \cdot 3}{6}=1$, so it is true for $n=1$. Now, assume it is true for k. We must prove that it is true for $k+1$.

$$
\begin{aligned}
\sum_{i=1}^{k+1} i^{2} & =\sum_{i=1}^{k} i^{2}+(k+1)^{2} \\
& =\frac{k(k+1)(2 k+1)}{6}+(k+1)^{2} \\
& =\frac{k(k+1)(2 k+1)+6(k+1)^{2}}{6}=\frac{(k+1)[k(2 k+1)+6(k+1)]}{6} \\
& =\frac{\left.(k+1)\left[2 k^{2}+7 k+6\right)\right]}{6}=\frac{(k+1)(k+2)(2 k+3)}{6}
\end{aligned}
$$

which is what we needed, and we are done.
(b) $1^{3}+2^{3}+\cdots+n^{3}=(1+2+\cdots+n)^{2}$

First, check it for $n=1$ and we have $1^{3}=(1)^{2}$, so it is true for $n=1$. Now, assume it is true for k. We must prove that it is true for $k+1$.

$$
\begin{aligned}
1^{3}+2^{3}+\cdots+(k+1)^{3} & =1^{3}+2^{3}+\cdots+k^{3}+(k+1)^{3} \\
& =(1+2+\cdots+k)^{2}+(k+1)^{3} \\
& =\left(\frac{k(k+1)}{2}\right)^{2}+(k+1)^{3}=\frac{k^{2}(k+1)^{2}+4(k+1)^{3}}{4} \\
& =\frac{(k+1)^{2}\left(k^{2}+4 k+4\right)}{4}=\frac{(k+1)^{2}(k+2)^{2}}{4} \\
& =\left(\frac{(k+1)(k+2)}{2}\right)^{2}=(1+2+\cdots+(k+1))^{2}
\end{aligned}
$$

which is what we needed, and we are done.
5. Find a formula for
(a) $\sum_{i=1}^{n}(2 i-1)=1+3+5+7+\cdots+(2 n-1)$

$$
\begin{aligned}
\sum_{k=1}^{2 n} k & =\sum_{k=1}^{n}(2 k-1)+\sum_{k=1}^{n} 2 k \\
\frac{(2 n)(2 n+1)}{2} & =\sum_{k=1}^{n}(2 k-1)+2 \sum_{k=1}^{n} k \\
\sum_{k=1}^{n}(2 k-1) & =2 n^{2}+n-2 \frac{n(n+1)}{2} \\
& =2 n^{2}+n-\left(n^{2}+n\right)=n^{2}
\end{aligned}
$$

(b) $\sum_{i=1}^{n}(2 i-1)^{2}=1^{2}+3^{2}+5^{2}+7^{2}+\cdots+(2 n-1)^{2}$

Solution Method I:

$$
\begin{aligned}
\sum_{k=1}^{2 n} k^{2} & =\sum_{k=1}^{n}(2 k-1)^{2}+\sum_{k=1}^{n}(2 k)^{2} \\
\sum_{k=1}^{n}(2 k-1)^{2} & =\frac{(2 n)(2 n+1)(4 n+1)}{6}-4 \sum_{k=1}^{n} k^{2} \\
& =\frac{(2 n)(2 n+1)(4 n+1)}{6}-\frac{4 n(n+1)(2 n+1)}{6} \\
& =\frac{2 n(2 n+1)(2 n-1)}{6}=\frac{4 n^{3}-n}{3}
\end{aligned}
$$

Solution Method II:

$$
\begin{aligned}
\sum_{k=1}^{n}(2 k-1)^{2} & =\sum_{k=1}^{n}\left(4 k^{2}-4 k+1\right) \\
& =\sum_{k=1}^{n} 4 k^{2}-\sum_{k=1}^{n} 4 k+\sum_{k=1}^{n} 1 \\
& =4 \sum_{k=1}^{n} k^{2}-4 \sum_{k=1}^{n} k+n \\
& =4\left(\frac{n(n+1)(2 n+1)}{6}\right)-4\left(\frac{n(n+1)}{2}\right)+n \\
& =\frac{2 n(n+1)(2 n+1)}{3}-2 n^{2}-n \\
& =\frac{n(2 n+1)(2 n-1)}{3}=\frac{4 n^{3}-n}{3}
\end{aligned}
$$

6. Use the given method to find:
(a) $1^{3}+2^{3}+3^{3}+4^{3}+\cdots+n^{3}$

Following the example from the homework sheet we note that $(k+1)^{4}-k^{4}=$ $4 k^{3}+6 k^{2}+4 k+1$. Then proceeding as the example we would have:

$$
\begin{aligned}
(n+1)^{4}-1 & =4 \sum_{k=1}^{n} n^{3}+6 \sum_{k=1}^{n} n^{2}+4 \sum_{k=1}^{n} n+n \\
4 \sum_{k=1}^{n} n^{3} & =(n+1)^{4}-1-6 \frac{n(n+1)(2 n+1)}{6}-4 \frac{n(n+1)}{2}-n \\
4 \sum_{k=1}^{n} n^{3} & =(n+1)^{4}-1-n(n+1)(2 n+1)-2 n(n+1)-n \\
4 \sum_{k=1}^{n} n^{3} & =n^{4}+2 n^{3}+n^{2} \\
\sum_{k=1}^{n} n^{3} & =\frac{n^{2}(n+1)^{2}}{4}
\end{aligned}
$$

(b) $1^{4}+2^{4}+3^{4}+4^{4}+\cdots+n^{4}$

First, $(k+1)^{5}-k^{5}=5 k^{4}+10 k^{3}+10 k^{2}+5 k+1$. So,

$$
\begin{aligned}
(n+1)^{5}-1 & =5 \sum_{k=1}^{n} n^{4}+10 \sum_{k=1}^{n} n^{3}+10 \sum_{k=1}^{n} n^{2}+5 \sum_{k=1}^{n} n+n \\
5 \sum_{k=1}^{n} n^{4} & =(n+1)^{5}-1-10 \frac{n^{2}(n+1)^{2}}{4}-10 \frac{n(n+1)(2 n+1)}{6}-5 \frac{n(n+1)}{2}-n \\
5 \sum_{k=1}^{n} n^{4} & =n^{5}+\frac{5 n^{4}}{2}+\frac{5 n^{3}}{3}-\frac{n}{6} \\
5 \sum_{k=1}^{n} n^{4} & =\frac{n(2 n+1)(n+1)\left(3 n^{2}+3 n-1\right)}{6} \\
\sum_{k=1}^{n} n^{4} & =\frac{n(2 n+1)(n+1)\left(3 n^{2}+3 n-1\right)}{30}
\end{aligned}
$$

(c) $\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{n(n+1)}$

For this one you need to realize that each term is of the form $\frac{1}{k \cdot(k+1)}$ and this can be rewritten as $\frac{1}{k \cdot(k+1)}=\frac{1}{k}-\frac{1}{k+1}$. Thus,

$$
\begin{aligned}
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{n(n+1)} & =\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\cdots+\left(\frac{1}{n}-\frac{1}{n+1}\right) \\
& =1-\frac{1}{n+1}=\frac{n}{n+1}
\end{aligned}
$$

This is a classic example of what is known as a telescoping sum.

