MATH 6101-090

ASSIGNMENT 1 - SOLUTIONS
September 11, 2006

1. Using the Trichotomy Law prove that if a and b are real numbers then one and only
one of the following is possible: a < b, a =b, or a > b.

Since a and b are real numbers then a — b is a real number. By the Trichotomy Law we
know that a —b < 0, a —b =0 or a — b > 0. These immediately translate into a < b,
a="bora>bh.

2. We define the absolute value of a real number a by

a, a>0
la| =
—a, a<0

Prove the following:

(a) la+b] < laf +[0].
We will each of these by cases. The case where either ab = 0 is not interesting,
so we will leave it. We must have a < 0 or a > 0 and b < 0 or b > 0. Thus, we
are left with 4 cases to check: (1) a >0and b >0, (2) a <0and b>0, (3) a>0
and b < 0, and (4) a < 0 and b < 0.
In case (1) since both a and b are positive, a + b is positive and |a| = a, |b] = b,
and |a +b| = a+b. Therefore |a+b| = a+b = |a|+ |b| and the statement is true.
In case (2), since a < 0, |a| = —a. To show that |a + b| < |a| + |b| we must show
that

la| + [b] — |a +b] > 0.

Eithera+b<0ora+5b>0.
Ifa+b>0

la| + | — la+b] = (—a)+b—(a+Db)
= —2a>0since —a >0

fa+b<0

la| +[b] = ]a+b] = (—a)+b—(—(a+D))
= (—a)+b+a+0))
= 2b>0since b >0

Thus |a + b] < |a| + |b] in this case.
Case (3) is similar since the roles of a and b are reversed.
Case (4) is similar to Case (1).



(b)
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|zy| =[] - [yl

Here we break the proof up into the same cases: (1) x > 0,y > 0, (2) x < 0,y > 0,
(3) x>0,y <0,and (4) x <0,y <0.

In Case (1) since x > 0 and y > 0, then zy > 0, and it easily follows that
|yl =2y = |2| - |y|.

In Case (2) since z < 0 and y > 0, then zy < 0, and it easily follows that
|zy| = —(zy) = (—2)y = |2| - |y|.

In Case (3) since x > 0 and y < 0, then zy < 0, and it easily follows that
|zyl = —(zy) = x(—y) = || - [yl.

In Case (4) since z < 0 and y < 0, then zy > 0, and it follows that |zy| = zy =

(—2)(= ) =] - yl.
L if x #0.

i

:m’

1
Since x # 0, we know that — is its multiplicative inverse, so
x

1 1
1 o]
Solving gives us that |[—| = —
z| |zl
il I LT
yl ]
. T 1
Use the above again and the fact that — =z - —:
) )
T 1 1 1 ||
D=le 2=t o) =l =
Y y y lyl -yl

o =yl < ||+ [yl.
Solution Method I: The eloquent solution uses the results of Part 2a to show
this:

[z =yl =z + (=y)| < [a]+ [ =yl = |2| + ],
where the inequality comes from 2a.
Solution Method II: You can do this one much like the first one. Break it into
cases and do them one at a time. Cases: (1) z > 0,y > 0, (2) z < 0,y > 0, (3)
x>0,y <0,and (4) z < 0,y < 0.
We need to show in each case that |z| + |y| — |x — y| > 0.
In Case (1) we have to deal with two cases t —y <Oandz—y > 0. If z —y > 0,
then |t —y| =z —yand |z|+|y|—|z—y| =2z+y—(x—y) =2y > 0. lfx—y <0,
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then |z —y|=—(r—y)=y—zand |[z|+|y|— |z —y|=z+y— (y—2z) =22 > 0.
Thus, this is true in Case (1).

Case (2): In this case || = —x and |y| = y. Again, we have to consider two
cases: r —y < 0 and z —y > 0. However, note that if x < 0 and y > 0, it cannot
happen that z —y > 0. So, x —y < 0, then |z —y| = —(x —y) = y — = and
lz| + |yl — |t —y| = -z +y — (y — x) = 0 > 0. Thus, this is true in Case (2).
Case (3): In this case |x| = z and |y| = —y. Again, we have to consider two cases:
r—y<0and z—y > 0. Again, as in Case (2) it is impossible for z —y < 0. So,
r—y>0,then |z —y|=zv—yand |z|+ |y — |z —y|=2—-y—(r—y)=0>0.
Thus, this is true in Case (3).

For Case (4), |zr| = —xz and |y| = —y. f 2 —y > 0, then |z —y| = z —y
and |z|+ |yl — |z —y| = -2+ (—y) — (r —y) = =22 > 0. If x —y < 0, then
2=yl = —=(r—y) =y—zand [z|+]y| = |z —y| = —z+(-y) = (y—2) = =2y > 0.
Thus, this is true.

2| — |y < |z -yl

Solution Method I: There is an eloquent solution here as well.

lz —y+y
<z —yl+ |yl
lz] = ly| < Jz—vy]

|z

Solution Method II: You can also break it into cases and do them one at a time.
Cases: (1) x>0,y >0, (2) x<0,y>0,(3) x>0,y <0, and (4) x <0,y < 0.
We need to show in each case that |z —y| — (|z] — |y|) = |z — y| — |z| + |y| > 0.

In Case (1) we have to deal with two cases x —y <Oand z—y > 0. If x —y > 0,
then |z —y|=z—yand [z —y|—|z|+ |y =x—y—2x+y=20>0. Ifx—y <0,
then [z —y| = —(z—y) =y—x and |z —y|—|z|+|y| = y—z—2+y =2(y—2) > 0.
Thus, this is true in Case (1).

Case (2): In this case |z| = —x and |y| = y. This time it is possible for x —y <0
but impossible for x —y > 0. If 2 —y <0, then |z —y| = —(z —y) = y — x and
|z —y| —|z| +|y| =y — 2+ 2 +y =2y > 0. Thus, this is true in Case (2),

Case (3): In this case |z| = x and |y| = —y. This time it is possible for x —y > 0
but impossible for z—y < 0. If x—y > 0, then |z—y| = z—y and |z—y|—|z|+]|y| =
r—y—x—y=—2y >0. Thus, this is true in Case (3).

For Case (4), || = —z and |y| = —y. If z —y > 0, then |z — y| = x — y and
lz —yl—|z|+ly =2 —y—(—2)+ (—y) =2(x —y) > 0. If v —y <0, then
[z —yl=—(r—y)=y—wand [x —y[ - |z + |y =y -2 = (=2) + (-y) =0 > 0.
Thus, this is true.
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3. The fact that a®> > 0 for all real numbers a has tremendous implications. The most
widely used of all inequalities is the Schwarz inequality:

1y + T2y2 < \/x% + CE%\/?/% + 5
Do ONE of the following:
(a) Prove the Schwarz inequality by using 2zy < x* + y? (how is this derived?) with

L5 Yi
rT = —— =

) Y= —F——
Vit + a3 Vi + iy
first for i =1 and then for i = 2.

The first inequality comes from the fact that 0 < (z — y)? = 2% — 22y + ¥, so
2xy < 22 + y%. Thus, doing the algebra

IN

2xy z? 4 o

IN

2 2
9 X1 U1 1 1 U1
vVt + 133 + 3 vVt + a3 Vi +y3

IA

2 2
9 11 € i Y1
Vi + a3yt + 3 Vi + 23 VIR + Y3
T1Y1 3 yi
2
Va3 + 23y + y3

IN

i1+23  yi+ys

and
T2Yo 3 Y5

2 2 P} 2 S 2 2 + 2 2

\/$1+x2\/y1 + Y3 T +xy Yt Y
Adding these

T1y1 + Tayo < 3+ x3 s _ 9
V2t a2 +yd T witars yi+ys

T1Y1 + T2Yo < 1

V1t 4+ 23y} + y?

n t oy < \Jo byt 3

(b) Prove the Schwarz inequality by first proving that
(@F +23) (47 +3) = (@151 + 221)” + (2192 — 22tn)”.

First,
(2] + 23) (Y] + v3) = 21y} + 23y7 + 2iys + 253,
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Now,

(z131 + T2y2)” + (2192 — T2pn1)

(2] + 23) (Y7 + v3)

Thus,

V@ + )y (43 +42)

and we are done.

SOLUTIONS

TIY; + 221Y1ToYo + ToYs + TTY5 — 2T1Y1T2Ys + T
1YL + T3Y; + Tiys + 23y
(27 + 23) (¥ + v3)

= (v + $2y2)2 + (2192 — 1’2?/1)2
> (x1h + $2y2)2

T1Y1 + T2yo

4. Prove the following formulae by induction

n

nn+1)2n+1)

(@) P4+22 4 +n?=> i’ =

=1

First, check it for n = 1 and we have 12 =

6

%’3 =1, so it is true for n = 1. Now,

assume it is true for k. We must prove that it is true for k + 1.

i+ (k+1)?

hE

i—1

-
I

_

-

k(k+1)2k+1)
5 +

(k+1)
k(k+1)(2k+ 1)+ 6(k + 1)

(k+1)[k(2k +1) +6(k + 1)]

6

(k +1)[2k* + Tk + 6)]

B 6
(k+ 1)(k + 2)(2k + 3)

6

6

which is what we needed, and we are done.

(b) P+2°+ - +n’=(14+2+-+n)’

First, check it for n = 1 and we have 13

(1)%, so it is true for n = 1. Now,

assume it is true for k. We must prove that it is true for £ + 1.
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P4+22 4+ 4 (k+1)°

which is what we needed,

5. Find a formula for

n

SOLUTIONS

= P+2+. + P+ (k+1)°
= (1424 +k)?+(k+1)°

_ (k(k:;l)) +(kﬂ)gikz(/k;+1) Z:r4(/7<:+1)
(k+1)%(k*+4k+4)  (k+1)%*(k+2)?
4

4
(k+1)(k+2)
and we are done.

5 ) =142+ + (k+1))?

(@) > (2i—1)=1+3+5+7+-+(2n—1)

=1

(2n)(2n + 1)

n

> (2k—1)

k=1

n

(b) Y (20 -1 =1+3"+5"+ 7"+

1=1

Solution Method I:

2n
L
k=1

2

(2k — 1)+ ) 2k
k=1

(2k—1)+2) k

2n
>k
k=1

M- 10

k=1
n(n+1)

on? —2
n-+n 5

2n® +n — (n® +n) = n?

+(2n — 1)?

n

(]

(2k — 1) + Zn:(zk)Q

2n)(2n +61)(4n +1) 4i 12

—

(2n)2n+1)4n+1) 4n?n +1)(2n+1)
6 6
2n(2n+1)(2n —1)  4n® —n
6 3
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Solution Method II:

n n

S @k—1)* = ) (4K -4k +1)

k=1 k=1

n

= 4k2—§:4k+§:1
1 k=1 k=1

k=

= 4ik2—4ik+n
_ 4k<frlz(n+1)l(€2frlz+1)) _4(@) .

6 2
_on@2n+1)2n—1) 40’ —n
a 3 3

Use the given method to find:

(a) 13 +23 433+ 43 4... +n?

Following the example from the homework sheet we note that (k + 1)* — k* =
4k3 + 6k* 4 4k + 1. Then proceeding as the example we would have:

n+D*—1 = 4in3+6in2+4in+n
k=1 k=1 k=1

4zn:n3 _ (n+1)4_1_6n(n+1)(2n+1) _4n(n+1) .

6 2
4zn:n3 = m+D*—1—-nn+1D2n+1)—2n(n+1)—n

k=1
n

4Zn3 = n*+ 2% +n?

k=1

n 2 1)2

S = n*(n+1)
4

k=1

(b) 1*+2t 434+ 4+ . +nt
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First, (k +1)% — k° = 5k* 4+ 10k® + 10k* + 5k + 1. So,

(n+1P°—-1 = 5in4+10§:n3+10§:n2+5§:n+n
k=1 k=1 k=1 k=1

n 2 2
+1) n(n+1)(2n+ 1) n(n+1)
53 0t = DI BT L G ) —5 =
;n (n+1) 1 5 5 n
- 5nt  Bn®  n
4 _ 5
) nt = wh -
k=1
52”:n4 _ n2n+1)(n+1)(3n* +3n — 1)
6
k=1
in4 ~ n(2n+1)(n+1)(3n* 4 3n — 1)
— 30
(c) Ly ! + -t !
C —_— —_— PR —
1-22-3 n(n+ 1)
1
For this one you need to realize that each term is of the form m and this
1 1
can be rewritten as m = E — ]{;—H Thus,
1 n 1 P 1 (11 n 1 1 T 1 1
1.2 2-3 nin+1)  \1 2 2 3 n n+l
B I n
- n+l n+1

This is a classic example of what is known as a telescoping sum.
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