MATH 6101-090

 ASSIGNMENT 4-SOLUTIONS

 ASSIGNMENT 4-SOLUTIONS}

02-October-2006

1. Find the limits of the following sequences
(a) $a_{n}=\sqrt{n^{2}+1}-n$.

$$
a_{n}=\sqrt{n^{2}+1}-n=\frac{1}{\sqrt{n^{2}+1}+n} \frac{\sqrt{n^{2}+1}-n}{\sqrt{n^{2}+1}-n}=\frac{1}{\sqrt{n^{2}+1}+n}
$$

To find this limit we will multiply both top and bottom by $1 / n$.

$$
\frac{1}{\sqrt{n^{2}+1}+n}=\frac{\frac{1}{n}}{\frac{1}{n} \sqrt{n^{2}+1}+1}=\frac{\frac{1}{n}}{\sqrt{1+\frac{1}{n^{2}}}+1}
$$

As $n \rightarrow \infty$ the top goes to 0 and the bottom goes to $1+1=2$, so the term approaches 0 .

$$
\lim _{n \rightarrow \infty} a_{n}=0 .
$$

(b) $b_{n}=\sqrt{n^{2}+n}-n$.

We will do something similar here. We need to modify the fraction - in a sense we need to "irrationalize" the denominator.

$$
\sqrt{n^{2}+n}-n=\frac{n}{\sqrt{n^{2}+n}+n} \frac{\sqrt{n^{2}+n}-n}{\sqrt{n^{2}+n}-n}=\frac{n}{\sqrt{n^{2}+n}+n}
$$

So,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} b_{n} & =\lim _{n \rightarrow \infty} \frac{n}{\sqrt{n^{2}+n}+n} \\
& =\lim _{n \rightarrow \infty} \frac{\frac{n}{n}}{\frac{1}{n} \sqrt{n^{2}+n}+1} \\
& =\lim _{n \rightarrow \infty} \frac{1}{\sqrt{1+\frac{1}{n}}+1}=\frac{1}{2}
\end{aligned}
$$

(c) $c_{n}=\sqrt{4 n^{2}+n}-2 n$. Again, irrationalizing the denominator, we have

$$
\sqrt{4 n^{2}+n}-2 n=\frac{n}{\sqrt{4 n^{2}+n}+2 n} \frac{\sqrt{4 n^{2}+n}-2 n}{\sqrt{4 n^{2}+n}-2 n}
$$

so,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} c_{n} & =\lim _{n \rightarrow \infty} \frac{n}{\sqrt{4 n^{2}+n}+2 n} \\
& =\lim _{n \rightarrow \infty} \frac{\frac{n}{n}}{\frac{1}{n} \sqrt{4 n^{2}+n}+2} \\
& =\lim _{n \rightarrow \infty} \frac{1}{\sqrt{4+\frac{1}{n}}+2}=\frac{1}{4}
\end{aligned}
$$

2. Suppose that $\lim x_{n}=3, \lim y_{n}=7$ and that all y_{n} are nonzero. Determine the following limits:

$$
\text { (a) } \lim \left(x_{n}+y_{n}\right) \quad \text { (b) } \lim \frac{3 y_{n}-x_{n}}{y_{n}^{2}}
$$

(a) $\lim \left(x_{n}+y_{n}\right)=\lim x_{n}+\lim y_{n}=3+7=10$.
(b)

$$
\lim \frac{3 y_{n}-x_{n}}{y_{n}^{2}}=\frac{3 \lim y_{n}-\lim x_{n}}{\left(\lim y_{n}\right)^{2}}=\frac{3 \cdot 7-3}{7^{2}}=\frac{18}{49}
$$

3. Let $a_{1}=1$ and for $n \geq 1$ let $a_{n+1}=\sqrt{a_{n}+1}$.
(a) List the first five terms of $\left\{a_{n}\right\}$.

$$
\begin{aligned}
& a_{1}=1 \\
& a_{2}=\sqrt{2} \\
& a_{3}=\sqrt{1+\sqrt{2}} \\
& a_{4}=\sqrt{1+\sqrt{1+\sqrt{2}}} \\
& a_{5}=\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{2}}}}
\end{aligned}
$$

(b) It turns out that $\left\{a_{n}\right\}$ converges. Assume that this is true and show that the limit is $\frac{1}{2}(1+\sqrt{5})$.
Since $\left\{a_{n}\right\}$ converges, its limit a must satisfy the equation $a=\sqrt{a+1}$. What this means is that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} a_{n+1} & =\lim _{n \rightarrow \infty} \sqrt{a_{n}+1} \\
\lim _{n \rightarrow \infty} a_{n+1} & =\sqrt{\lim _{n \rightarrow \infty} a_{n}+1} \\
a & =\sqrt{a+1}
\end{aligned}
$$

This is only true because the limit exists!. This means

$$
\begin{aligned}
a & =\sqrt{a+1} \\
a^{2} & =a+1 \\
a^{2}-a-1 & =0
\end{aligned}
$$

The roots to this equation are $r_{1}=\frac{1+\sqrt{5}}{2}$ and $r_{2}=\frac{1-\sqrt{5}}{2}$. Now, all of the a_{n} 's are positive, so the sequence must converge to the positive root, or

$$
\lim _{n \rightarrow \infty} a_{n}=\frac{1+\sqrt{5}}{2} .
$$

4. Let $a_{1}=1$ and $a_{n+1}=\frac{1}{3}\left(a_{n}+1\right)$ for $n \geq 1$.
(a) Find a_{2}, a_{3}, a_{4} and a_{5}.

$$
\begin{aligned}
& a_{1}=1 \\
& a_{2}=\frac{1}{3}(1+1)=\frac{2}{3} \\
& a_{3}=\frac{1}{3}\left(\frac{2}{3}+1\right)=\frac{5}{9} \\
& a_{4}=\frac{1}{3}\left(\frac{5}{9}+1\right)=\frac{14}{27} \\
& a_{5}=\frac{1}{3}\left(\frac{14}{27}+1\right)=\frac{41}{81}
\end{aligned}
$$

(b) Use induction to show that $a_{n}>\frac{1}{2}$ for all n.

Method I:
First, $a_{1}=1>1 / 2$ so the statement is true for $\mathrm{n}=1$. Assume that the statement is true for n, i.e. assume that $a_{n}>\frac{1}{2}$. We need to show that $a_{n+1}>\frac{1}{2}$.

$$
\begin{aligned}
a_{n+1} & =\frac{1}{3}\left(a_{n}+1\right) \\
a_{n+1} & >\frac{1}{3}\left(\frac{1}{2}+1\right)=\frac{1}{3} \cdot \frac{3}{2}=\frac{1}{2}
\end{aligned}
$$

Thus, we have shown that if it is true for n it is also true for $n+1$, and the statement is true by induction.
Method II:
Checking you have that

$$
\begin{aligned}
a_{n} & =\frac{2+3+9+27+\cdots+3^{n-2}}{3^{n-1}} \\
& =\frac{2+\sum_{k=1}^{n-1} 3^{k}}{3^{n-1}} \\
& =\frac{2+\frac{3^{n-1}-1}{3-1}-1}{3^{n-1}} \\
& =\frac{1}{2}\left(1+\frac{1}{3^{n-1}}\right)
\end{aligned}
$$

We need to show this is true for all n.

$$
\begin{aligned}
a_{n+1} & =\frac{1}{3}\left(a_{n}+1\right)=\frac{1}{3}\left(1+\frac{1}{2}\left(1+\frac{1}{3^{n-1}}\right)\right) \\
& =\frac{1}{3} \frac{1}{2}\left(3+\frac{1}{3^{n-1}}\right) \\
& =\frac{1}{2}\left(1+\frac{1}{3^{n}}\right)
\end{aligned}
$$

which is what we needed to show. Now,

$$
a_{n}=\frac{1}{2}+\frac{1}{2} \frac{1}{3^{n-1}}>\frac{1}{2} .
$$

(c) Show that $\left\{a_{n}\right\}$ is a nonincreasing sequence.

Method I:

We need to show that $a_{n}>a_{n+1}$ for all n. We will be done if we can show that $a_{n}-a_{n+1}>0$ for all n, since the first statement clearly follows from the second.

$$
\begin{aligned}
& a_{n}-a_{n+1}=a_{n}-\frac{1}{3}\left(a_{n}+1\right) \\
& a_{n}-a_{n+1}=\frac{2}{3} a_{n}-\frac{1}{3}>\frac{2}{3} \cdot \frac{1}{2}-\frac{1}{3}=0
\end{aligned}
$$

and we have shown what we needed to show.
Method II:

$$
a_{n+1}=\frac{1}{2}\left(1+\frac{1}{3^{n}}\right)<\frac{1}{2}\left(1+\frac{1}{3^{n-1}}\right)=a_{n},
$$

so each term is smaller than the previous and the sequence is nonincreasing.
(d) Find $\lim a_{n}$.

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{1}{2}\left(1+\frac{1}{3^{n-1}}\right)=\frac{1}{2}
$$

5. For each of the following sequences find the $\operatorname{glb}\left\{a_{n}\right\}, \operatorname{lub}\left\{a_{n}\right\}, \lim \sup \left\{a_{n}\right\}$, and $\liminf \left\{a_{n}\right\}$.
(a) $\left\{(-1)^{n}\right\}_{n=0}^{\infty}$ Let A denote the set of values of this sequence. $A=\{-1,1\}$. Thus, $\operatorname{lub} A=1, \operatorname{glb} A=-1, \liminf \left\{a_{n}\right\}=-1$, and $\limsup \left\{a_{n}\right\}=1$.
(b) $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$ Let B denote the set of values of this sequence.

$$
B=\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\} .
$$

From this we see that $\operatorname{lub} B=\operatorname{lub}\left\{a_{n}\right\}=1$ and $\operatorname{glb} B=\operatorname{glb}\left\{a_{n}\right\}=0$. The "tails" of this sequence are $A_{n}=\left\{\frac{1}{n}, \frac{1}{n+1}, \ldots\right\}$. Then $u_{n}=\operatorname{lub} A_{n}=\frac{1}{n}$ and $v_{n}=\operatorname{glb} A_{n}=0$. Then the limsup and liminf are

$$
\begin{aligned}
\lim \sup \left\{a_{n}\right\} & =\lim _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty} \frac{1}{n}=0 \\
\lim \inf \left\{a_{n}\right\} & =\lim _{n \rightarrow \infty} v_{n}=\lim _{n \rightarrow \infty} 0=0
\end{aligned}
$$

(c) $\left\{(-1)^{n} n\right\}_{n=0}^{\infty}$ Let B denote the set of values of this sequence.

$$
B=\{0,-1,2,-3,4,-5,6, \ldots\}
$$

From this we see that $\operatorname{lub} B=\operatorname{lub}\left\{a_{n}\right\}=+\infty$ and $\operatorname{glb} B=\operatorname{glb}\left\{a_{n}\right\}=-\infty$. The "tails" of this sequence are $A_{n}=\left\{(-1)^{n} n,(-1)^{n+1}(n+1), \ldots\right\}$. Then $u_{n}=\operatorname{lub} A_{n}=+\infty$ and $v_{n}=\operatorname{glb} A_{n}=-\infty$. Then the limsup and liminf are

$$
\begin{aligned}
\limsup \left\{a_{n}\right\} & =\lim _{n \rightarrow \infty} u_{n}=+\infty \\
\liminf \left\{a_{n}\right\} & =\lim _{n \rightarrow \infty} v_{n}=-\infty
\end{aligned}
$$

6. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be the following sequences that repeat in cycles of four.

$$
\begin{aligned}
\left\{a_{n}\right\} & =\{0,1,2,1,0,1,2,1,0,1,2,1,0,1,2,1,0, \ldots\} \\
\left\{b_{n}\right\} & =\{2,1,1,0,2,1,1,0,2,1,1,0,2,1,1,0,2, \ldots\}
\end{aligned}
$$

First, let's find a few items:

$$
\begin{aligned}
\left\{a_{n}+b_{n}\right\} & =\{2,2,3,1,2,2,3,1,2,2,3,1,2,2,3,1, \ldots\} \\
\left\{a_{n} b_{n}\right\} & =\{0,1,2,0,0,1,2,0,0,1,2,0,0,1,2,0, \ldots\} \\
\liminf a_{n} & =0 \\
\limsup a_{n} & =2 \\
\liminf b_{n} & =0 \\
\limsup b_{n} & =2
\end{aligned}
$$

(a) $\liminf a_{n}+\liminf b_{n}=0+0=0$
(b) $\liminf \left(a_{n}+b_{n}\right)=1$
(c) $\liminf a_{n}+\limsup b_{n}=0+2=2$
(d) $\limsup \left(a_{n}+b_{n}\right)=3$
(e) $\limsup a_{n}+\limsup b_{n}=2+2=4$
(f) $\liminf a_{n} b_{n}=0$
(g) $\limsup a_{n} b_{n}=2$

