MATH 6101-090

ASSIGNMENT 5-SOLUTIONS

23-October-2006

1. Use the limit convergence test to decide whether the following series converge or diverge. Note that you need to know convergence of the p-series.
(a) Does the series $\sum_{n=1}^{\infty} \frac{n+5}{n^{3}-2 n+3}$ converge or diverge?

Using the Limit Comparison Test we can see that by comparing the given series to the series $\sum 1 / n^{2}$:

$$
r=\lim _{n \rightarrow \infty} \frac{\frac{n+5}{n^{3}-2 n+3}}{\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{n^{3}+5 n^{2}}{n^{3}-2 n+3}=1 .
$$

Since $0<r<+\infty$ and since $\sum 1 / n^{2}$ converges, so does $\sum_{n=1}^{\infty} \frac{n+5}{n^{3}-2 n+3}$.
(b) Does the series $\sum_{n=1}^{\infty} \frac{1}{1+\sqrt{n}}$ converge of diverge?

This time use the Limit Comparison Test with the series $\sum 1 / \sqrt{n}$.

$$
r=\lim _{n \rightarrow \infty} \frac{\frac{1}{1+\sqrt{n}}}{\frac{1}{\sqrt{n}}}=\lim _{n \rightarrow \infty} \frac{\sqrt{n}}{1+\sqrt{n}}=1 .
$$

Since $0<r<+\infty$ and since $\sum 1 / \sqrt{n}$ diverges, so does $\sum_{n=1}^{\infty} \frac{1}{1+\sqrt{n}}$.
2. (a) What is the actual limit of the sum $\sum_{n=2}^{\infty}\left(\frac{1}{2}\right)^{n}$?

Use the geometric series to find this sum.

$$
\sum_{n=2}^{\infty}\left(\frac{1}{2}\right)^{n}=\left(\frac{1}{2}\right)^{2}\left(\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n}\right)=\frac{1}{4} \cdot \frac{1}{1-\frac{1}{2}}=\frac{1}{2}
$$

Alternatively, you could do this by:

$$
\sum_{n=2}^{\infty}\left(\frac{1}{2}\right)^{n}=\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n}-\left[\left(\frac{1}{2}\right)^{0}+\left(\frac{1}{2}\right)^{1}\right]=\frac{1}{1-\frac{1}{2}}-1-\frac{1}{2}=\frac{1}{2}
$$

(b) What is the actual limit of the sum $\sum_{n=10}^{\infty}\left(\frac{3}{4}\right)^{n}$?

Do this one like above:

$$
\sum_{n=10}^{\infty}\left(\frac{3}{4}\right)^{n}=\left(\frac{3}{4}\right)^{10}\left(\sum_{n=0}^{\infty}\left(\frac{3}{4}\right)^{n}\right)=\frac{59049}{1048576} \cdot \frac{1}{1-\frac{3}{4}}=\frac{59049}{262144} .
$$

The alternative way does not look as appealing this time:

$$
\sum_{n=10}^{\infty}\left(\frac{3}{4}\right)^{n}=\sum_{n=0}^{\infty}\left(\frac{3}{4}\right)^{n}-\sum_{n=0}^{9}\left(\frac{3}{4}\right)^{n}=\frac{1}{1-\frac{3}{4}}-\frac{1-\left(\frac{3}{4}\right)^{10}}{1-\frac{3}{4}}=4-\frac{989527}{262144}=\frac{59049}{262144} .
$$

(c) Does the sum $\sum_{n=1}^{\infty} \frac{2^{n}+1}{3^{n}-4}$ converge? What test do you use to determine convergence or divergence?
This series converges using the Limit Comparison Test with the geometric series $\sum\left(\frac{2}{3}\right)^{n}$.
3. Show that if $\sum a_{n}$ and $\sum b_{n}$ are convergent series of nonnegative numbers, then $\sum \sqrt{a_{n} b_{n}}$ converges. [HINT: Show that $\sqrt{a_{n} b_{n}} \leq a_{n}+b_{n}$.]
First, to show the hint,

$$
\begin{aligned}
\left(\sqrt{a_{n}}-\sqrt{b_{n}}\right)^{2} & \geq 0 \\
a_{n}-2 \sqrt{a_{n}} \sqrt{b_{n}}+b_{n} & \geq 0 \\
a_{n}+b_{n} & \geq 2 \sqrt{a_{n} b_{n}} \geq \sqrt{a_{n} b_{n}}
\end{aligned}
$$

Now since both $\sum a_{n}$ and $\sum b_{n}$ are convergent series, then their sum, $\sum\left(a_{n}+b_{n}\right)$ is a convergent series. We have just shown that $\sqrt{a_{n} b_{n}} \leq a_{n}+b_{n}$, so by the Comparison Test $\sum \sqrt{a_{n} b_{n}}$ converges.
4. Determine which of the following series converge and justify your answer.
(a) $\sum_{n=1}^{\infty} \frac{n^{4}}{2^{n}}$ We should probably try the Ratio Test:

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{(n+1)^{4}}{2^{n+1}} \cdot \frac{2^{n}}{n^{4}}=\lim _{n \rightarrow \infty} \frac{1}{2} \cdot\left(\frac{n+1}{n}\right)^{4}=\frac{1}{2} .
$$

Since the ratio is less than 1 , the series converges. In fact we can show that $\sum_{n=1}^{\infty} \frac{n^{4}}{2^{n}}=150$. How about that?
(b) $\sum_{n=1}^{\infty} \frac{2^{n}}{n!}$ Let's try the Ratio Test again.

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{2^{n+1}}{(n+1)!} \cdot \frac{n!}{2^{n}}=\lim _{n \rightarrow \infty} \frac{2}{n+1}=0
$$

Since the ratio is less than 1 , the series converges. In fact we can show that $\sum_{n=1}^{\infty} \frac{2^{n}}{n!}=e^{2}$.
(c) $\sum_{n=1}^{\infty} \frac{\cos ^{2} n}{n^{2}}$ We will use the Comparison Test here. $\cos ^{2} n \leq 1$ for all n, so

$$
\frac{\cos ^{2} n}{n^{2}} \leq \frac{1}{n^{2}}
$$

for all n. Since $\sum 1 / n^{2}$ converges, so does this series. We may not be able to evaluate this sum, but we know that it is less than $\pi^{2} / 6$.
(d) $\sum_{n=1}^{\infty} \frac{1}{n^{n}}$ This one is set up to use the Root Test.

$$
\alpha=\lim _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}=\lim _{n \rightarrow \infty}\left|\frac{1}{n^{n}}\right|^{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{1}{n}=0 .
$$

Since $\alpha<1$ the series converges.
(e) $\sum_{n=1}^{\infty} \frac{100^{n}}{n!}$ Let's try the Ratio Test again.

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{100^{n+1}}{(n+1)!} \cdot \frac{n!}{100^{n}}=\lim _{n \rightarrow \infty} \frac{100}{n+1}=0
$$

Since the ratio is less than 1 , the series converges. In fact we can show that $\sum_{n=1}^{\infty} \frac{100^{n}}{n!}=e^{100}$.
5. We have seen that it is often harder to find the value of an infinite sum than to show that it exists. Here are some sums that you can find.
(a) Calculate $\sum_{n=1}^{\infty}\left(\frac{2}{3}\right)^{n}$ and $\sum_{n=1}^{\infty}\left(-\frac{2}{3}\right)^{n}$.

These are geometric series, but they start at 1 not at 0 . Thus the sum is $\frac{1}{1-r}-1$.

$$
\begin{aligned}
\sum_{n=1}^{\infty}\left(\frac{2}{3}\right)^{n} & =\frac{1}{1-\frac{2}{3}}-1=2 \\
\sum_{n=1}^{\infty}\left(-\frac{2}{3}\right)^{n} & =\frac{1}{1+\frac{2}{3}}-1=\frac{2}{3}
\end{aligned}
$$

(b) Prove that $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=1$. Compare assignment 2.

In Assignment 2 we showed that $s_{n}=1-\frac{1}{n+1}$. Thus, the sum, which is the limit of the partial sums, is 1 .
(c) Prove that $\sum_{n=1}^{\infty} \frac{n-1}{2^{n+1}}=\frac{1}{2}$. [Hint: Note that $\left.\frac{k-1}{2^{k+1}}=\frac{k}{2^{k}}-\frac{k+1}{2^{k+1}}\right]$.

First,

$$
\frac{k}{2^{k}}-\frac{k+1}{2^{k+1}}=\frac{2 k-k-1}{2^{k+1}}=\frac{k-1}{2^{k+1}} .
$$

Thus,

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{n-1}{2^{n+1}} & =\sum_{n=1}^{\infty}\left(\frac{n}{2^{n}}-\frac{n+1}{2^{n+1}}\right) \\
& =\sum_{n=1}^{\infty} \frac{n}{2^{n}}-\sum_{n=1}^{\infty} \frac{n+1}{2^{n+1}} \\
& =\frac{1}{2}+\sum_{n=2}^{\infty} \frac{n}{2^{n}}-\sum_{n=2}^{\infty} \frac{n}{2^{n}}=\frac{1}{2}
\end{aligned}
$$

(d) Use (c) to compute $\sum_{n=1}^{\infty} \frac{n}{2^{n}}$.

$$
\begin{aligned}
\frac{1}{2}=\sum_{n=1}^{\infty} \frac{n-1}{2^{n+1}} & =\frac{1}{4} \sum_{n=1}^{\infty} \frac{n-1}{2^{n-1}} \\
& =\frac{1}{4} \sum_{n=0}^{\infty} \frac{n}{2^{n}} \\
\sum_{n=0}^{\infty} \frac{n}{2^{n}} & =\sum_{n=1}^{\infty} \frac{n}{2^{n}}=4 \cdot \frac{1}{2}=2
\end{aligned}
$$

