ASSIGNMENT 6 SOLUTIONS

30-October-2006

1. Prove that $n^{2}<2^{n}$ for all $n \geq 5$.

First, let's check it for $n=5.5^{2}=25<32=2^{5}$, so it is true for $n=5$.
Let us assume that $n^{2}<2^{n}$ and we need to show that this is true for $n+1$.

$$
(n+1)^{2}=n^{2}+2 n+1<2^{n}+2 n+1
$$

In order to complete the proof, we need to know that $2 n+1<2^{n}$ for $n>5$. This is clearly true for $n=5$, so assuming that it is true for n, let's check it for $n+1$.

$$
2(n+1)+1=2 n+1+2<2^{n}+2<2^{n}+2^{n}=2^{n+1}
$$

so this is true for all $n>5$. Thus, in our original proof, we now have:

$$
\begin{aligned}
(n+1)^{2} & =n^{2}+2 n+1 \\
& <2^{n}+2 n+1 \\
& <2^{n}+2^{n}=2^{n+1}
\end{aligned}
$$

and we are done.
2. Consider the sequence

$$
0,1,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,0,0,1, \ldots
$$

where each string of zeros has one more zero than the previous. Does this sequence converge or diverge? If it converges to a limit L, prove that it converges to L. If it diverges, prove that it diverges.
The sequence diverges. One way of showing this is that there is a subsequence which does not converge to 0 . Another way of showing this is that regardless of what ϵ is given, for any $N>0$ there is another $a_{n}=1$ for $n>N$. This will keep the sequence from converging.
3. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ and $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$.
(a) Prove that $f(0)=0$.

Since $f(0)=f(0+0)=f(0)+f(0)$ we get $f(0)=0$.
(b) Prove by induction that $f(n x)=n f(x)$ for all $x \in \mathbb{R}$ and $n \in \mathbb{N}$.

First, we know that it is true for $n=1$ because $f(1 \cdot x)=f(x)=1 \cdot f(x)$. Assume this to be true for n. We need to show that $f((n+1) x)=(n+1) f(x)$.

$$
\begin{aligned}
f((n+1) x) & =f(n x+x) \\
& =f(n x)+f(x) \\
& =n f(x)+f(x)=(n+1) f(x)
\end{aligned}
$$

as we wanted.
Let $\alpha=f(1)$.
(c) Prove that $f(x)=\alpha x$ for all $x \in \mathbb{N}$.

Let $x \in \mathbb{N}$, then $f(x)=f(x \cdot 1)=x \cdot f(1)$ by our previous part. Thus, $f(x)=\alpha x$ if $x \in \mathbb{N}$.
(d) Prove that $f(-x)=-f(x)$ for all $x \in \mathbb{R}$. Conclude that $f(x)=\alpha x$ for all $x \in \mathbb{Z}$.

To see that $f(-x)=-f(x)$, recall that $0=f(0)=f(x-x)=f(x)+f(-x)$ which leads us to $f(-x)=-f(x)$ for all $x \in \mathbb{R}$. Since $f(x)=\alpha x$ if $x \in \mathbb{N}$, then if $x \in \mathbb{Z}$ and $x<0$, then $x=-k$, where $k \in \mathbb{N}$. Thus, $f(x)=f(-k)=-f(k)=-k \alpha=x \alpha=\alpha x$ if $x \in \mathbb{Z}$.
(e) Prove that $f\left(\frac{x}{n}\right)=\frac{f(x)}{n}$ for all $x \in \mathbb{R}$. Conclude that $f(x)=\alpha x$ for all $x \in \mathbb{Q}$.

If $x \in \mathbb{R}$, then

$$
f(x)=f\left(n \cdot \frac{x}{n}\right)=n f\left(\frac{x}{n}\right) .
$$

so $f\left(\frac{x}{n}\right)=\frac{f(x)}{n}$ for all $x \in \mathbb{R}$. If $x \in \mathbb{Q}$, then $x=\frac{p}{q}$ where $p, q \in \mathbb{Z}$. We know that

$$
f\left(\frac{p}{q}\right)=\frac{f(p)}{q}=\frac{\alpha p}{q}=\alpha \frac{p}{q}=\alpha x .
$$

(f) Suppose in addition that f is continuous, i.e. that for all $a \in \mathbb{R}, \lim _{x \rightarrow a} f(x)=f(a)$. Prove that $f(x)=\alpha x$ for all $x \in \mathbb{R}$.
Let $\left\{a_{n}\right\}$ be a sequence of rational numbers whose limit is x. Since the rationals are dense in \mathbb{R} we can choose such a sequence. Then

$$
f(x)=f\left(\lim a_{n}\right)=\lim f\left(a_{n}\right)=\lim \alpha a_{n}=\alpha \lim a_{n}=\alpha x .
$$

