ASSIGNMENT 7 SOLUTIONS 04-November-2006

1. Prove that

$$\prod_{k=2}^{n} \left(1 - \frac{1}{k^2}\right) = \frac{n+1}{2n}$$

for all $n \geq 2$.

Check this for n = 3 and we have

~

$$\prod_{k=2}^{3} \left(1 - \frac{1}{k^2} \right) = \left(1 - \frac{1}{4} \right) \left(1 - \frac{1}{9} \right)$$
$$= \frac{3}{4} \cdot \frac{8}{9} = \frac{2}{3}$$
$$= \frac{3+1}{2 \cdot 3}$$

Thus, this is true for the first case. Now, assume that the formula is true for n and we need to show that it is true for n + 1. Thus, we know that

$$\prod_{k=2}^{n} \left(1 - \frac{1}{k^2}\right) = \frac{n+1}{2n}.$$

We need to show that

$$\prod_{k=2}^{n+1} \left(1 - \frac{1}{k^2} \right) = \frac{n+2}{2n+2}$$

$$\begin{split} \prod_{k=2}^{n+1} \left(1 - \frac{1}{k^2} \right) &= \left(1 - \frac{1}{(n+1)^2} \right) \prod_{k=2}^n \left(1 - \frac{1}{k^2} \right) \\ &= \left(1 - \frac{1}{(n+1)^2} \right) \frac{n+1}{2n} \\ &= \frac{n+1}{2n} - \frac{1}{2n(n+1)} = \frac{(n+1)^2 - 1}{2n(n+1)} \\ &= \frac{n+2}{2(n+1)} \end{split}$$

which is what we were to show.

2. Suppose that $f: X \to Y$ is onto and $A \subseteq Y$. Prove that

$$f(f^{-1}(A)) = A$$

We need to show that $f(f^{-1}(A)) \subseteq A$ and $A \subseteq f(f^{-1}(A))$.

Let $a \in A$. Since f is onto, there is an $x \in X$ so that f(x) = a. Since $f(x) = a \in A$, $x \in f^{-1}(A)$ which makes $a \in f(f^{-1}(A))$ and we have shown that $A \subseteq f(f^{-1}(A))$.

Let $y \in f(f^{-1}(A))$. Then y = f(x) where $x \in f^{-1}(A)$. By definition $x \in f^{-1}(A)$ if and only if $f(x) \in A$. Thus, $y = f(x) \in A$ and $f(f^{-1}(A)) \subseteq A$.

Therefore, we have shown that $A = f(f^{-1}(A))$.

- 3. Decide if the following statements are **true** or **false**. If **false**, give an example showing the statement is **false**.
 - (a) If f: N → N is one-to-one, then f is onto.
 This is false. Consider the function f: N → N given by f(x) = x + 1. This function is clearly one-to-one, but it is not onto since there is no element in N that is sent to 1.
 - (b) If $f : \mathbb{R} \to \mathbb{R}$ is one-to-one and onto, then there is an inverse function f^{-1} . This is true.
 - (c) If $A \subset \mathbb{R}$ is bounded above, then there is an element $a \in A$ that is a least upper bound for A.

This is false. While it is true that the set must have a least upper bound, the least upper bound does not have to belong to A. Let $A = (-\infty, 2)$. Then 2 is the least upper bound for A, but $2 \notin A$.

(d) Let f: R → R and g: [0, +∞) → R be the functions f(x) = x² and g(x) = √x. Then (f ∘ g)(x) = x and (g ∘ f)(x) = x.
It is true that f(g(x)) = x since we are starting in the positive reals. However, it is not

It is true that f(g(x)) = x since we are starting in the positive reals. However, it is not true that g(f(x)) = x for all real numbers: $g(f(-2)) = \sqrt{4} = 2 \neq -2$. This statement is false.

- (e) If $x^2 < y^2$, then x < y. This is false. Consider x = -2 and y = -3. It is true that $x^2 = 4 < 9 = y^2$, but y = -3 < -2 = x.
- 4. Give examples of the following phenomena.
 - (a) A function $f : \mathbb{R} \to \mathbb{R}$ that is one-to-one but not onto. There are a number of functions that will work, such as $f(x) = \arctan(x)$ or $f(x) = e^x$.
 - (b) A function $f: \mathbb{N} \to \mathbb{N}$ that is onto but not one-to-one. Playing off of the previous function from \mathbb{N} to \mathbb{N} , let the function f be given by

$$f \colon x \mapsto \begin{cases} x - 1 & \text{if } x > 1 \\ 1 & \text{if } x = 1 \end{cases}$$

Now, f(1) = 1 = f(2) and the function is otherwise clearly onto.

(c) A function $f : \mathbb{R} \to \mathbb{R}$ and sets $A, B \subset \mathbb{R}$ such that $f(A \cap B) \not\supseteq f(A) \cap f(B)$. For this one let $f : x \mapsto x^2$ and let $A = (-\infty, 0)$ and $B = (0, +\infty)$. Then, $A \cap B = \emptyset$ so $f(A \cap B) = \emptyset$. However, $f(A) = (0, +\infty) = f(B)$, so $f(A) \cap f(B) = (0, +\infty) \not\subseteq f(A \cap B)$. (d) A sequence of intervals $J_n = (a_n, b_n)$ where $a_n < b_n$ for all n and $J_1 \supseteq J_2 \supseteq J_3 \supseteq \dots$, but

$$\bigcap_{n=1}^{\infty} J_n = \emptyset$$

Let
$$J_n = \left(0, \frac{1}{n}\right)$$
, for $n = 1, 2, 3, \dots$ Then, $J_1 \supseteq J_2 \supseteq J_3 \supseteq \dots$, but
 $\bigcap_{n=0}^{\infty} J_n = \emptyset.$

(e) A sequence of intervals $J_n = (a_n, b_n)$ where

$$a_1 < a_2 < a_3 < \dots < a_n < \dots < b_n < \dots < b_2 < b_1$$

n=1

but

$$\bigcap_{n=1}^{\infty} J_n \neq \emptyset.$$

We will take an example like the previous one. Let $J_n = \left(-\frac{1}{n}, \frac{1}{n}\right)$ so the first condition is satisfied, but $0 \in J_n$ for all n which makes

$$\bigcap_{n=1}^{\infty} J_n = \{0\} \neq \emptyset.$$

5. Suppose a, b, x, y > 0 and $\frac{a}{b} < \frac{x}{y}$. Prove that $\frac{a}{b} < \frac{a+x}{b+y}$. Since a < x we have

Since $\frac{a}{b} < \frac{x}{y}$ we have

$$\begin{aligned} \frac{a}{b} &< \frac{x}{y} \\ ay &< bx \\ ab + ay &< ab + bx \\ a(b + y) &< b(a + x) \\ \frac{a}{b} &< \frac{a + x}{b + y} \end{aligned}$$