ASSIGNMENT 7 SOLUTIONS

04-November-2006

1. Prove that

$$
\prod_{k=2}^{n}\left(1-\frac{1}{k^{2}}\right)=\frac{n+1}{2 n}
$$

for all $n \geq 2$.
Check this for $n=3$ and we have

$$
\begin{aligned}
\prod_{k=2}^{3}\left(1-\frac{1}{k^{2}}\right) & =\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right) \\
& =\frac{3}{4} \cdot \frac{8}{9}=\frac{2}{3} \\
& =\frac{3+1}{2 \cdot 3}
\end{aligned}
$$

Thus, this is true for the first case. Now, assume that the formula is true for n and we need to show that it is true for $n+1$. Thus, we know that

$$
\prod_{k=2}^{n}\left(1-\frac{1}{k^{2}}\right)=\frac{n+1}{2 n}
$$

We need to show that

$$
\begin{aligned}
& \prod_{k=2}^{n+1}\left(1-\frac{1}{k^{2}}\right)=\frac{n+2}{2 n+2} \\
& \prod_{k=2}^{n+1}\left(1-\frac{1}{k^{2}}\right)=\left(1-\frac{1}{(n+1)^{2}}\right) \prod_{k=2}^{n}\left(1-\frac{1}{k^{2}}\right) \\
&=\left(1-\frac{1}{(n+1)^{2}}\right) \frac{n+1}{2 n} \\
&=\frac{n+1}{2 n}-\frac{1}{2 n(n+1)}=\frac{(n+1)^{2}-1}{2 n(n+1)} \\
&=\frac{n+2}{2(n+1)}
\end{aligned}
$$

which is what we were to show.
2. Suppose that $f: X \rightarrow Y$ is onto and $A \subseteq Y$. Prove that

$$
f\left(f^{-1}(A)\right)=A
$$

We need to show that $f\left(f^{-1}(A)\right) \subseteq A$ and $A \subseteq f\left(f^{-1}(A)\right)$.

Let $a \in A$. Since f is onto, there is an $x \in X$ so that $f(x)=a$. Since $f(x)=a \in A$, $x \in f^{-1}(A)$ which makes $a \in f\left(f^{-1}(A)\right)$ and we have shown that $A \subseteq f\left(f^{-1}(A)\right)$.
Let $y \in f\left(f^{-1}(A)\right)$. Then $y=f(x)$ where $x \in f^{-1}(A)$. By definition $x \in f^{-1}(A)$ if and only if $f(x) \in A$. Thus, $y=f(x) \in A$ and $f\left(f^{-1}(A)\right) \subseteq A$.

Therefore, we have shown that $A=f\left(f^{-1}(A)\right)$.
3. Decide if the following statements are true or false. If false, give an example showing the statement is false.
(a) If $f: \mathbb{N} \rightarrow \mathbb{N}$ is one-to-one, then f is onto.

This is false. Consider the function $f: \mathbb{N} \rightarrow \mathbb{N}$ given by $f(x)=x+1$. This function is clearly one-to-one, but it is not onto since there is no element in \mathbb{N} that is sent to 1.
(b) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is one-to-one and onto, then there is an inverse function f^{-1}. This is true.
(c) If $A \subset \mathbb{R}$ is bounded above, then there is an element $a \in A$ that is a least upper bound for A.

This is false. While it is true that the set must have a least upper bound, the least upper bound does not have to belong to A. Let $A=(-\infty, 2)$. Then 2 is the least upper bound for A, but $2 \notin A$.
(d) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g:[0,+\infty) \rightarrow \mathbb{R}$ be the functions $f(x)=x^{2}$ and $g(x)=\sqrt{x}$. Then $(f \circ g)(x)=x$ and $(g \circ f)(x)=x$.
It is true that $f(g(x))=x$ since we are starting in the positive reals. However, it is not true that $g(f(x))=x$ for all real numbers: $g(f(-2))=\sqrt{4}=2 \neq-2$. This statement is false.
(e) If $x^{2}<y^{2}$, then $x<y$.

This is false. Consider $x=-2$ and $y=-3$. It is true that $x^{2}=4<9=y^{2}$, but $y=-3<-2=x$.
4. Give examples of the following phenomena.
(a) A function $f: \mathbb{R} \rightarrow \mathbb{R}$ that is one-to-one but not onto.

There are a number of functions that will work, such as $f(x)=\arctan (x)$ or $f(x)=e^{x}$.
(b) A function $f: \mathbb{N} \rightarrow \mathbb{N}$ that is onto but not one-to-one.

Playing off of the previous function from \mathbb{N} to \mathbb{N}, let the function f be given by

$$
f: x \mapsto \begin{cases}x-1 & \text { if } x>1 \\ 1 & \text { if } x=1\end{cases}
$$

Now, $f(1)=1=f(2)$ and the function is otherwise clearly onto.
(c) A function $f: \mathbb{R} \rightarrow \mathbb{R}$ and sets $A, B \subset \mathbb{R}$ such that $f(A \cap B) \nsupseteq f(A) \cap f(B)$.

For this one let $f: x \mapsto x^{2}$ and let $A=(-\infty, 0)$ and $B=(0,+\infty)$. Then, $A \cap B=\emptyset$ so $f(A \cap B)=\emptyset$. However, $f(A)=(0,+\infty)=f(B)$, so $f(A) \cap f(B)=(0,+\infty) \nsubseteq f(A \cap B)$.
(d) A sequence of intervals $J_{n}=\left(a_{n}, b_{n}\right)$ where $a_{n}<b_{n}$ for all n and $J_{1} \supseteq J_{2} \supseteq J_{3} \supseteq \ldots$, but

$$
\bigcap_{n=1}^{\infty} J_{n}=\emptyset .
$$

Let $J_{n}=\left(0, \frac{1}{n}\right)$, for $n=1,2,3, \ldots$. Then, $J_{1} \supseteq J_{2} \supseteq J_{3} \supseteq \ldots$, but

$$
\bigcap_{n=1}^{\infty} J_{n}=\emptyset .
$$

(e) A sequence of intervals $J_{n}=\left(a_{n}, b_{n}\right)$ where

$$
a_{1}<a_{2}<a_{3}<\cdots<a_{n}<\cdots<b_{n}<\cdots<b_{2}<b_{1}
$$

but

$$
\bigcap_{n=1}^{\infty} J_{n} \neq \emptyset .
$$

We will take an example like the previous one. Let $J_{n}=\left(-\frac{1}{n}, \frac{1}{n}\right)$ so the first condition is satisfied, but $0 \in J_{n}$ for all n which makes

$$
\bigcap_{n=1}^{\infty} J_{n}=\{0\} \neq \emptyset .
$$

5. Suppose $a, b, x, y>0$ and $\frac{a}{b}<\frac{x}{y}$. Prove that $\frac{a}{b}<\frac{a+x}{b+y}$.

Since $\frac{a}{b}<\frac{x}{y}$ we have

$$
\begin{aligned}
\frac{a}{b} & <\frac{x}{y} \\
a y & <b x \\
a b+a y & <a b+b x \\
a(b+y) & <b(a+x) \\
\frac{a}{b} & <\frac{a+x}{b+y}
\end{aligned}
$$

