ASSIGNMENT 8 SOLUTIONS

13-November-2006

1. Express all the hyperbolic functions in terms of $\sinh x$. Given $\cosh x=2$ find the values of the other functions.

$$
\begin{aligned}
\sinh x & =\sinh x \\
\cosh x & =\sqrt{\sinh ^{2} x+1} \\
\tanh x & =\frac{\sinh x}{\sqrt{\sinh ^{2} x+1}} \\
\operatorname{coth} x & =\frac{\sqrt{\sinh ^{2} x+1}}{\sinh x} \\
\operatorname{sech} x & =\frac{1}{\sqrt{\sinh ^{2} x+1}} \\
\operatorname{csch} x & =\frac{1}{\sinh x}
\end{aligned}
$$

Now, if $\cosh x=2$, then $\sinh x=\sqrt{3}$ and

$$
\begin{aligned}
\sinh x & =\sqrt{3} \\
\cosh x & =2 \\
\tanh x & =\frac{\sqrt{3}}{2} \\
\operatorname{coth} x & =\frac{2}{\sqrt{3}} \\
\operatorname{sech} x & =\frac{1}{2} \\
\operatorname{csch} x & =\frac{1}{\sqrt{3}}
\end{aligned}
$$

2. (a) Show that

$$
\begin{aligned}
\left(\cosh u_{1}+\sinh u_{1}\right)\left(\cosh u_{2}+\sinh u_{2}\right)= & \cosh \left(u_{1}+u_{2}\right)+\sinh \left(u_{1}+u_{2}\right) \\
\left(\cosh u_{1}+\sinh u_{1}\right)\left(\cosh u_{2}+\sinh u_{2}\right)= & \cosh u_{1} \cosh u_{2}+\cosh u_{1} \sinh u_{2}+ \\
& \sinh u_{1} \cosh u_{2}+\sinh u_{1} \sinh u_{2} \\
= & \left(\cosh u_{1} \cosh u_{2}+\sinh u_{1} \sinh u_{2}\right)+ \\
& \left(\sinh u_{1} \cosh u_{2}+\cosh u_{1} \sinh u_{2}\right) \\
= & \cosh \left(u_{1}+u_{2}\right)+\sinh \left(u_{1}+u_{2}\right)
\end{aligned}
$$

(b) Show that for any positive integer $n>0$

$$
\prod_{i=1}^{n}\left(\cosh u_{i}+\sinh u_{i}\right)=\cosh \left(\sum_{i=1}^{n} u_{i}\right)+\sinh \left(\sum_{i=1}^{n} u_{i}\right)
$$

This is done by induction with (a) serving as the first step. Assume that this is true for n. We need to prove it true for $n+1$.

$$
\begin{aligned}
\prod_{i=1}^{n+1}\left(\cosh u_{i}+\sinh u_{i}\right) & =\left(\prod_{i=1}^{n}\left(\cosh u_{i}+\sinh u_{i}\right)\right)\left(\cosh u_{n+1}+\sinh u_{n+1}\right) \\
& =\left(\cosh \left(\sum_{i=1}^{n} u_{i}\right)+\sinh \left(\sum_{i=1}^{n} u_{i}\right)\right)\left(\cosh u_{n+1}+\sinh u_{n+1}\right)
\end{aligned}
$$

which by the above process

$$
\begin{aligned}
& =\cosh \left(\sum_{i=1}^{n} u_{i}+u_{n+1}\right)+\sinh \left(\sum_{i=1}^{n} u_{i}+u_{n+1}\right) \\
& =\cosh \left(\sum_{i=1}^{n+1} u_{i}\right)+\sinh \left(\sum_{i=1}^{n+1} u_{i}\right)
\end{aligned}
$$

which is what we needed to show.
(c) What does this become if $u_{1}=u_{2}=\cdots=u_{n}=u$?

This becomes an analogue of Euler's Formula:

$$
(\cosh u+\sinh u)^{n}=\cosh (n u)+\sinh (n u) .
$$

3. Evaluate the following integral in terms of hyperbolic trigonometric functions

$$
\int \frac{1}{\sqrt{4+x^{2}}} d x
$$

Use the substitution $x=2 \sinh u$, then $d x=2 \cosh u d u$ and the integral becomes:

$$
\begin{aligned}
\int \frac{1}{\sqrt{4+x^{2}}} d x & =\int \frac{1}{\sqrt{4 \cosh ^{2} u}} 2 \cosh u d u \\
& =\int 1 d u=u=\sinh ^{-1}\left(\frac{x}{2}\right)+C
\end{aligned}
$$

4. Differentiate the following functions.
(a) $f(x)=3 x \tanh (4 x)$.

$$
f^{\prime}(x)=3 \tanh (4 x)+12 x \operatorname{sech}^{2}(4 x) .
$$

(b) $g(x)=5 x \operatorname{sech}(4 x)-21 \tanh ^{3}(4 x)$.

$$
\begin{aligned}
g^{\prime}(x) & =5 \operatorname{sech}(4 x)-20 x \operatorname{sech}(4 x) \tanh (4 x)-63 \tanh ^{2}(4 x) \cdot \operatorname{sech}(4 x) \cdot 4 \\
& =5 \operatorname{sech}(4 x)-20 x \operatorname{sech}(4 x) \tanh (4 x)-252 \tanh ^{2}(4 x) \operatorname{sech}(4 x)
\end{aligned}
$$

5. (a) Use the substitution $x=\cosh u, u>0$ to show that

$$
\int \frac{1}{\sqrt{x^{2}-1}} d x=\cosh ^{-1}(x)+C
$$

for $x>1$.
As in the previous integration problem, if $x=\cosh u$, then $d x=\sinh u d u$ and

$$
\begin{aligned}
\int \frac{1}{\sqrt{x^{2}-1}} d x & =\int \frac{1}{\sqrt{\sinh ^{2} u}} \cosh u d u \\
& =\int 1 d u=u+C=\cosh ^{-1} x+C
\end{aligned}
$$

(b) Use the substitution $x=\sec u, 0<u<\frac{\pi}{2}$, to show that

$$
\int \frac{1}{\sqrt{x^{2}-1}} d x=\ln \left|x+\sqrt{x^{2}-1}\right|+C
$$

for $x>1$.
Let $x=\sec u$, then $d x=\sec u \tan u d u$ and

$$
\begin{aligned}
\int \frac{1}{\sqrt{x^{2}-1}} d x & =\int \frac{1}{\sqrt{\tan ^{2} u}} \sec u \tan u d u \\
& =\int \sec u d u=\ln |\sec u+\tan u|+C=\ln \left|x+\sqrt{1+x^{2}}\right|+C
\end{aligned}
$$

(c) Use the above to show that

$$
\cosh ^{-1}(x)=\ln \left|x+\sqrt{x^{2}-1}\right|
$$

for $x>1$.
Since both sides are antiderivatives for the same function, they differ by a constant, i.e.,

$$
\cosh ^{-1}(x)=\ln \left|x+\sqrt{x^{2}-1}\right|+k
$$

We know that $\cosh ^{-1}(1)=0$ and $\ln |1+\sqrt{1-1}|=0$, so we have $0=0+k$, or $k=0$ so that $\cosh ^{-1}(x)=\ln \left|x+\sqrt{x^{2}-1}\right|$.
6. As we did in the text, find the derivative of $\operatorname{glog}(x)$.

From the definition of $\operatorname{glog}(x)$, we know that $x \cdot g \log (x)=e^{g \log (x)}$. Differentiating both sides with respect to x gives us

$$
\begin{aligned}
\operatorname{glog}(x)+x \frac{d}{d x} \log (x) & =\frac{d}{d x} \operatorname{glog}(x) e^{g \log (x)} \\
\frac{d}{d x} \operatorname{glog}(x)\left(e^{g \log x}-x\right) & =-\operatorname{glog}(x) \\
\frac{d}{d x} \log (x) & =-\frac{\operatorname{glog}(x)}{\left(e^{g \log x}-x\right)} \\
\frac{d}{d x} \log (x) & =-\frac{\operatorname{glog}(x)}{x(\log x-1)}
\end{aligned}
$$

7. Find the second derivative of the Lambert W function.

We showed that

$$
W^{\prime}(x)=\frac{W(x)}{x(1+W(x))}
$$

so we differentiate this to find

$$
\begin{aligned}
W^{\prime \prime}(x) & =\frac{x(1+W(x)) W^{\prime}(x)-W(x)\left(1+W(x)+x W^{\prime}(x)\right)}{(x(1+W(x)))^{2}} \\
& =\frac{x W^{\prime}(x)-W(x)-W^{2}(x)}{(x(1+W(x)))^{2}} \\
& =-\frac{W^{2}(x)(2+W(x))}{(1+W(x))^{3} x^{2}} \\
& =\frac{W(x)}{(1+W(x))^{2} x^{2}}-\frac{W^{2}(x)}{x^{2}(1+W(x))^{3}}-\frac{W(x)}{x^{2}(1+W(x))}
\end{aligned}
$$

8. Using the Lambert W function, solve $x b^{x}=a$ for x.

Use the defining equation for the Lambert W function:

$$
x=W(y) \Longrightarrow y=x e^{x} .
$$

So we want to get $x b^{x}$ into the form $u e^{u}$. We know that $b^{x}=e^{x \ln b}$, so we can multiply both sides by $\ln b$ to get

$$
\begin{aligned}
x b^{x} & =a \\
x \ln b \cdot e^{x \ln b} & =a \ln b
\end{aligned}
$$

is true if and only if

$$
\begin{aligned}
x \ln b & =W(a \ln b) \\
x & =\frac{W(a \ln b)}{\ln b}
\end{aligned}
$$

