ASSIGNMENT 10

20-November-2006

1. Prove that if f is uniformly continuous on a bounded set S, then f is a bounded function on S, i.e., there is an $M>0, M \in \mathbb{R}$, so that $|f(x)| \leq M$ for all $x \in S$.
Hint: Try proof by contradiction.
2. The Mean Value Theorem states that if f is continuous on $[a, b]$ and differentiable on (a, b), then there is at least one $x \in(a, b)$ so that

$$
f^{\prime}(x)=\frac{f(b)-f(a)}{b-a}
$$

(a) Use the Mean Value Theorem to prove that

$$
|\sin x .-\sin y| \leq|x-y|
$$

for $x, y \in \mathbb{R}$.
(b) Show that $\sin x$ is uniformly continuous on \mathbb{R}.

