ASSIGNMENT 10 20-November-2006

- 1. Prove that if f is uniformly continuous on a bounded set S, then f is a bounded function on S, i.e., there is an M > 0, $M \in \mathbb{R}$, so that $|f(x)| \leq M$ for all $x \in S$. HINT: Try proof by contradiction.
 - 2. The Mean Value Theorem states that if f is continuous on [a, b] and differentiable on (a, b), then there is at least one $x \in (a, b)$ so that

$$f'(x) = \frac{f(b) - f(a)}{b - a}.$$

(a) Use the Mean Value Theorem to prove that

$$|\sin x. - \sin y| \le |x - y|$$

for $x, y \in \mathbb{R}$.

(b) Show that $\sin x$ is uniformly continuous on \mathbb{R} .