ASSIGNMENT 2

11-September-2006

- 1. Let s be a nonzero rational number and t be irrational.
 - (a) Prove that s t is irrational.
 - (b) Prove that st is irrational.
 - (c) Prove that s/t is irrational.
- 2. Although $\sqrt{2} + \sqrt{3}$ does not equal the square root of an integer, $\sqrt{27} + \sqrt{48}$ does.
 - (a) What integer's square root equals $\sqrt{27} + \sqrt{48}$?
 - (b) Find another different example like $\sqrt{27} + \sqrt{48}$.
 - (c) Find every set of different positive integers p, q, and r all less than 100 such that p and q are not perfect squares and $\sqrt{p} + \sqrt{q} = \sqrt{r}$.
- 3. Suppose that p and q are positive integers and that a = p/q. Explain why long division of p by q results in the decimal representation of a.
 [Hint: It is enough to explain why the decimal d = [D, d₁, d₂, d₃, ..., d_k, ...] produced by long division satisfies

$$D + \frac{d_1}{10} + \frac{d_2}{10^2} + \dots + \frac{d_k}{10^k} \le a \le D + \frac{d_1}{10} + \frac{d_2}{10^2} + \dots + \frac{d_k}{10^k} + \frac{1}{10^k}$$

for all $k \in \mathbb{N}$.]

- 4. Prove the following properties of any complex number z.
 - (a) $\text{Re}[z] = \frac{z + \bar{z}}{2}$
 - (b) $\text{Im}[z] = \frac{z \bar{z}}{2i}$
- 5. Suppose that $[r, \theta]$ is a point z in the complex plane, $x = r \cos \theta$ and $y = r \sin \theta$. If r' = -r and $\theta' = \theta + \pi(2n + 1)$, where n is an integer, prove that $[r', \theta']$ determines the same rectangular representation (x, y) of z.
- 6. Track the solution set in the complex plane of the quadratic equation $x^2 + bx + 2 = 0$ as the value of the real coefficient b varies.
- 7. Find the fifth roots of unity. Find the fifth roots of i. Plot them in the complex plane. How are they related?
- 8. Find $z_1 + z_2$, $z_1 z_2$, $z_1 z_2$, and z_1/z_2 .
 - (a) $z_1 = -2 + 8i, z_2 = -2 8i.$
 - (b) $z_1 = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right), z_2 = (1, 0).$
 - (c) $z_1 = [3, 225^\circ], z_2 = 7(\cos\frac{5\pi}{3} + i\sin\frac{5\pi}{3}).$
 - (d) z_1 and z_2 are the solutions to $x^2 + x + 1 = 0$.