ASSIGNMENT 2

11-September-2006

1. Let s be a nonzero rational number and t be irrational.
(a) Prove that $s-t$ is irrational.
(b) Prove that $s t$ is irrational.
(c) Prove that s / t is irrational.
2. Although $\sqrt{2}+\sqrt{3}$ does not equal the square root of an integer, $\sqrt{27}+\sqrt{48}$ does.
(a) What integer's square root equals $\sqrt{27}+\sqrt{48}$?
(b) Find another different example like $\sqrt{27}+\sqrt{48}$.
(c) Find every set of different positive integers p, q, and r all less than 100 such that p and q are not perfect squares and $\sqrt{p}+\sqrt{q}=\sqrt{r}$.
3. Suppose that p and q are positive integers and that $a=\frac{p}{q}$. Explain why long division of p by q results in the decimal representation of a.
[Hint: It is enough to explain why the decimal $d=\left[D, d_{1}, d_{2}, d_{3}, \ldots, d_{k}, \ldots\right]$ produced by long division satisfies

$$
D+\frac{d_{1}}{10}+\frac{d_{2}}{10^{2}}+\cdots+\frac{d_{k}}{10^{k}} \leq a \leq D+\frac{d_{1}}{10}+\frac{d_{2}}{10^{2}}+\cdots+\frac{d_{k}}{10^{k}}+\frac{1}{10^{k}}
$$

for all $k \in \mathbb{N}$.]
4. Prove the following properties of any complex number z.
(a) $\operatorname{Re}[z]=\frac{z+\bar{z}}{2}$
(b) $\operatorname{Im}[z]=\frac{z-\bar{z}}{2 i}$
5. Suppose that $[r, \theta]$ is a point z in the complex plane, $x=r \cos \theta$ and $y=r \sin \theta$. If $r^{\prime}=-r$ and $\theta^{\prime}=\theta+\pi(2 n+1)$, where n is an integer, prove that $\left[r^{\prime}, \theta^{\prime}\right]$ determines the same rectangular representation (x, y) of z.
6. Track the solution set in the complex plane of the quadratic equation $x^{2}+b x+2=0$ as the value of the real coefficient b varies.
7. Find the fifth roots of unity. Find the fifth roots of i. Plot them in the complex plane. How are they related?
8. Find $z_{1}+z_{2}, z_{1}-z_{2}, z_{1} z_{2}$, and z_{1} / z_{2}.
(a) $z_{1}=-2+8 i, z_{2}=-2-8 i$.
(b) $z_{1}=\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right), z_{2}=(1,0)$.
(c) $z_{1}=\left[3,225^{\circ}\right], z_{2}=7\left(\cos \frac{5 \pi}{3}+i \sin \frac{5 \pi}{3}\right.$.
(d) z_{1} and z_{2} are the solutions to $x^{2}+x+1=0$.

