ASSIGNMENT 3

18-September-2006

1. Let (a, b) and (c, d) be any two open intervals in the real line.
(a) Find a one-to-one function that maps $(0,1)$ to $(-1,1)$.
(b) Find a one-to-one function from (a, b) to (c, d). You must show that it is one-to-one.
(c) Prove that any two open intervals in the real line have the same cardinality.
2. Let $f(x)=1 /(1+x)$. What is
(a) $f(f(x))$ (for which x does this make sense?)?
(b) $f\left(\frac{1}{x}\right)$?
(c) $f(c x)$?
(d) $f(x+y)$?
(e) $f(x)+f(y)$?
(f) For which numbers c is there a number x such that $f(c x)=f(x)$?
(g) For which numbers c is it true that $f(c x)=f(x)$ for two different numbers x ?
3. For which numbers a, b, c, d will the function

$$
f(x)=\frac{a x+b}{c x+d}
$$

satisfy $f(f(x))=x$ for all x ?
4. Suppose that H is a function.
(a) Suppose that y is a number such that $H(H(y))=y$, what is

$$
\underbrace{H(H(H(\cdots(H(y) \cdots))))}_{20 \text { times }} ?
$$

(b) Same question if 20 is replaced by 21.
(c) Same question if $H(H(y))=H(y)$.
5. Let f and g be functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$.
(a) Determine whether $f+g$ is even, odd, or neither in the four cases obtained by choosing f even or odd and g even or odd.

$f+g$	f even	f odd
g even		
g odd		

(b) Do the same for $f \cdot g$.
(c) Do the same for $f \circ g$.
6. Let f, g, and h be functions from the reals to the reals. Prove or give a counterexample to each of the following.
(a) $f \circ(g+h)=f \circ g+f \circ h$
(b) $(g+h) \circ f=g \circ f+h \circ f$
(c) $\frac{1}{f \circ g}=\frac{1}{f} \circ g$
(d) $\frac{1}{f \circ g}=f \circ \frac{1}{g}$

