ASSIGNMENT 4 25-September-2006

- 1. Find the limits of the following sequences
 - (a) $a_n = \sqrt{n^2 + 1} n$. [HINT] Show that $a_n = \frac{1}{\sqrt{n^2 + 1} + n}$.
 - (b) $b_n = \sqrt{n^2 + n} n.$ (c) $c_n = \sqrt{4n^2 + n} - 2n.$
- 2. Suppose that $\lim x_n = 3$, $\lim y_n = 7$ and that all y_n are nonzero. Determine the following limits:

(a)
$$\lim(x_n + y_n)$$
 (b) $\lim \frac{3y_n - x_n}{y_n^2}$

- 3. Let $a_1 = 1$ and for $n \ge 1$ let $a_{n+1} = \sqrt{a_n + 1}$.
 - (a) List the first five terms of $\{a_n\}$.
 - (b) It turns out that $\{a_n\}$ converges. Assume that this is true and show that the limit is $\frac{1}{2}(1+\sqrt{5})$.
- 4. Let $a_1 = 1$ and $a_{n+1} = \frac{1}{3}(a_n + 1)$ for $n \ge 1$.
 - (a) Find a_2, a_3, a_4 and a_5 .
 - (b) Use induction to show that $a_n > \frac{1}{2}$ for all n.
 - (c) Show that $\{a_n\}$ is a nonincreasing sequence.
 - (d) Find $\lim a_n$.
- 5. For each of the following sequences find the glb $\{a_n\}$, lub $\{a_n\}$, lim sup $\{a_n\}$, and lim inf $\{a_n\}$.

(a)
$$\{(-1)^n\}_{n=0}^{\infty}$$

(b) $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$
(c) $\{(-1)^n n\}_{n=0}^{\infty}$

6. Let $\{a_n\}$ and $\{b_n\}$ be the following sequences that repeat in cycles of four.

$$\begin{array}{lll} \{a_n\} &=& \{0,1,2,1,0,1,2,1,0,1,2,1,0,1,2,1,0,\ldots\} \\ \\ \{b_n\} &=& \{2,1,1,0,2,1,1,0,2,1,1,0,2,1,1,0,2,\ldots\} \end{array}$$

Find

- (a) $\liminf a_n + \liminf b_n$
- (b) $\liminf(a_n + b_n)$
- (c) $\liminf a_n + \limsup b_n$
- (d) $\limsup(a_n + b_n)$
- (e) $\limsup a_n + \limsup b_n$
- (f) $\liminf a_n b_n$
- (g) $\limsup a_n b_n$