ASSIGNMENT 4

25-September-2006

1. Find the limits of the following sequences
(a) $a_{n}=\sqrt{n^{2}+1}-n$.
[HINT] Show that $a_{n}=\frac{1}{\sqrt{n^{2}+1}+n}$.
(b) $b_{n}=\sqrt{n^{2}+n}-n$.
(c) $c_{n}=\sqrt{4 n^{2}+n}-2 n$.
2. Suppose that $\lim x_{n}=3, \lim y_{n}=7$ and that all y_{n} are nonzero. Determine the following limits:
(a) $\lim \left(x_{n}+y_{n}\right)$
(b) $\lim \frac{3 y_{n}-x_{n}}{y_{n}^{2}}$
3. Let $a_{1}=1$ and for $n \geq 1$ let $a_{n+1}=\sqrt{a_{n}+1}$.
(a) List the first five terms of $\left\{a_{n}\right\}$.
(b) It turns out that $\left\{a_{n}\right\}$ converges. Assume that this is true and show that the limit is $\frac{1}{2}(1+\sqrt{5})$.
4. Let $a_{1}=1$ and $a_{n+1}=\frac{1}{3}\left(a_{n}+1\right)$ for $n \geq 1$.
(a) Find a_{2}, a_{3}, a_{4} and a_{5}.
(b) Use induction to show that $a_{n}>\frac{1}{2}$ for all n.
(c) Show that $\left\{a_{n}\right\}$ is a nonincreasing sequence.
(d) Find $\lim a_{n}$.
5. For each of the following sequences find the $\operatorname{glb}\left\{a_{n}\right\}, \operatorname{lub}\left\{a_{n}\right\}, \lim \sup \left\{a_{n}\right\}$, and $\lim \inf \left\{a_{n}\right\}$.
(a) $\left\{(-1)^{n}\right\}_{n=0}^{\infty}$
(b) $\left\{\frac{1}{n}\right\}_{n=1}^{\infty}$
(c) $\left\{(-1)^{n} n\right\}_{n=0}^{\infty}$
6. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be the following sequences that repeat in cycles of four.

$$
\begin{aligned}
& \left\{a_{n}\right\}=\{0,1,2,1,0,1,2,1,0,1,2,1,0,1,2,1,0, \ldots\} \\
& \left\{b_{n}\right\}=\{2,1,1,0,2,1,1,0,2,1,1,0,2,1,1,0,2, \ldots\}
\end{aligned}
$$

Find
(a) $\liminf a_{n}+\liminf b_{n}$
(b) $\liminf \left(a_{n}+b_{n}\right)$
(c) $\liminf a_{n}+\limsup b_{n}$
(d) $\lim \sup \left(a_{n}+b_{n}\right)$
(e) $\limsup a_{n}+\limsup b_{n}$
(f) $\liminf a_{n} b_{n}$
(g) $\limsup a_{n} b_{n}$

