ASSIGNMENT 5 02-October-2006

- 1. Use the limit convergence test to decide whether the following series converge or diverge. Note that you need to know convergence of the p-series.
 - (a) Does the series $\sum_{n=1}^{\infty} \frac{n+5}{n^3-2n+3}$ converge or diverge?

(b) Does the series
$$\sum_{n=1}^{\infty} \frac{1}{1+\sqrt{n}}$$
 converge of diverge?

- 2. (a) What is the actual limit of the sum $\sum_{n=2}^{\infty} \left(\frac{1}{2}\right)^n$? (b) What is the actual limit of the sum $\sum_{n=2}^{\infty} \left(\frac{3}{2}\right)^n$?
 - (b) What is the actual limit of the sum $\sum_{n=10}^{\infty} \left(\frac{3}{4}\right)^n$?
 - (c) Does the sum $\sum_{n=1}^{\infty} \frac{2^n + 1}{3^n 4}$ converge? What test do you use to determine convergence or divergence?
- 3. Show that if $\sum a_n$ and $\sum b_n$ are convergent series of nonnegative numbers, then $\sum \sqrt{a_n b_n}$ converges. [HINT: Show that $\sqrt{a_n b_n} \leq a_n + b_n$.]
- 4. Determine which of the following series converge and justify your answer.

(a)
$$\sum_{n=1}^{\infty} \frac{n^4}{2^n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{2^n}{n!}$$

(c)
$$\sum_{n=1}^{\infty} \frac{\cos^2 n}{n^2}$$

(d)
$$\sum_{n=1}^{\infty} \frac{1}{n^n}$$

(e)
$$\sum_{n=1}^{\infty} \frac{100^n}{n!}$$

- 5. We have seen that it is often harder to find the value of an infinite sum than to show that it exists. Here are some sums that you can find.
 - (a) Calculate $\sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^n$ and $\sum_{n=1}^{\infty} \left(-\frac{2}{3}\right)^n$. (b) Prove that $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$. Compare assignment 2. (c) Prove that $\sum_{n=1}^{\infty} \frac{n-1}{2^{n+1}} = \frac{1}{2}$. [*Hint*: Note that $\frac{k-1}{2^{k+1}} = \frac{k}{2^k} - \frac{k+1}{2^{k+1}}$]. (d) Use (c) to compute $\sum_{n=1}^{\infty} \frac{n}{2^n}$.