ASSIGNMENT 6

23-October-2006

1. Prove that $n^{2}<2^{n}$ for all $n \geq 5$. [Hint: While proving this you might be forced to prove another inequality about 2^{n} by a separate induction.]
2. Consider the sequence

$$
0,1,0,0,1,0,0,0,1,0,0,0,0,1,0,0,0,0,0,1, \ldots
$$

where each string of zeros has one more zero than the previous. Does this sequence converge or diverge? If it converges to a limit L, prove that it converges to L. If it diverges, prove that it diverges.
3. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ and $f(x+y)=f(x)+f(y)$ for all $x, y \in \mathbb{R}$.
(a) Prove that $f(0)=0$.
(b) Prove by induction that $f(n x)=n f(x)$ for all $x \in \mathbb{R}$ and $n \in \mathbb{N}$.

Let $\alpha=f(1)$.
(c) Prove that $f(x)=\alpha x$ for all $x \in \mathbb{N}$.
(d) Prove that $f(-x)=-f(x)$ for all $x \in \mathbb{R}$. Conclude that $f(x)=\alpha x$ for all $x \in \mathbb{Z}$.
(e) Prove that $f\left(\frac{x}{n}\right)=\frac{f(x)}{n}$ for all $x \in \mathbb{R}$. Conclude that $f(x)=\alpha x$ for all $x \in \mathbb{Q}$.
(f) Suppose in addition that f is continuous, i.e. that for all $a \in \mathbb{R}, \lim _{x \rightarrow a} f(x)=f(a)$. Prove that $f(x)=\alpha x$ for all $x \in \mathbb{R}$. [Remark: You have proved that the only continuous homomorphisms of the additive group $(\mathbb{R},+)$ are of the form $f(x)=\alpha x$.]

