ASSIGNMENT 7

30-October-2006

1. Prove that

$$
\prod_{k=2}^{n}\left(1-\frac{1}{k^{2}}\right)=\frac{n+1}{2 n}
$$

for all $n \geq 2$.
2. Suppose that $f: X \rightarrow Y$ is onto and $A \subseteq Y$. Prove that

$$
f\left(f^{-1}(A)\right)=A .
$$

[hint: Use elements of the sets.]
3. Decide if the following statements are TRUE or FALSE. If FALSE, give an example showing the statement is FALSE.
(a) If $f: \mathbb{N} \rightarrow \mathbb{N}$ is one-to-one, then f is onto.
(b) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is one-to-one and onto, then there is an inverse function f^{-1}.
(c) If $A \subset \mathbb{R}$ is bounded above, then there is an element $a \in A$ that is a least upper bound for A.
(d) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g:[0,+\infty) \rightarrow \mathbb{R}$ be the functions $f(x)=x^{2}$ and $g(x)=\sqrt{x}$. Then $(f \circ g)(x)=x$ and $(g \circ f)(x)=x$.
(e) If $x^{2}<y^{2}$, then $x<y$.
4. Give examples of the following phenomena.
(a) A function $f: \mathbb{R} \rightarrow \mathbb{R}$ that is one-to-one but not onto.
(b) A function $f: \mathbb{N} \rightarrow \mathbb{N}$ that is onto but not one-to-one.
(c) A function $f: \mathbb{R} \rightarrow \mathbb{R}$ and sets $A, B \subset \mathbb{R}$ such that $f(A \cap B) \nsupseteq f(A) \cap f(B)$.
(d) A sequence of intervals $J_{n}=\left(a_{n}, b_{n}\right)$ where $a_{n}<b_{n}$ for all n and $J_{1} \supseteq J_{2} \supseteq J_{3} \supseteq \ldots$, but

$$
\bigcap_{n=1}^{\infty} J_{n}=\emptyset .
$$

(e) A sequence of intervals $J_{n}=\left(a_{n}, b_{n}\right)$ where

$$
a_{1}<a_{2}<a_{3}<\cdots<a_{n}<\cdots<b_{n}<\cdots<b_{2}<b_{1}
$$

but

$$
\bigcap_{n=1}^{\infty} J_{n} \neq \emptyset .
$$

5. Suppose $a, b, x, y>0$ and $\frac{a}{b}<\frac{x}{y}$. Prove that $\frac{a}{b}<\frac{a+x}{b+y}$.
