ASSIGNMENT 7

30-October-2006

1. Prove that

$$\prod_{k=2}^{n} \left(1 - \frac{1}{k^2}\right) = \frac{n+1}{2n}$$

for all $n \geq 2$.

2. Suppose that $f: X \to Y$ is onto and $A \subseteq Y$. Prove that

$$f(f^{-1}(A)) = A.$$

[HINT: Use elements of the sets.]

- 3. Decide if the following statements are TRUE or FALSE. If FALSE, give an example showing the statement is FALSE.
 - (a) If $f: \mathbb{N} \to \mathbb{N}$ is one-to-one, then f is onto.
 - (b) If $f: \mathbb{R} \to \mathbb{R}$ is one-to-one and onto, then there is an inverse function f^{-1} .
 - (c) If $A \subset \mathbb{R}$ is bounded above, then there is an element $a \in A$ that is a least upper bound for A.
 - (d) Let $f : \mathbb{R} \to \mathbb{R}$ and $g : [0, +\infty) \to \mathbb{R}$ be the functions $f(x) = x^2$ and $g(x) = \sqrt{x}$. Then $(f \circ g)(x) = x$ and $(g \circ f)(x) = x$.
 - (e) If $x^2 < y^2$, then x < y.
- 4. Give examples of the following phenomena.
 - (a) A function $f : \mathbb{R} \to \mathbb{R}$ that is one-to-one but not onto.
 - (b) A function $f: \mathbb{N} \to \mathbb{N}$ that is onto but not one-to-one.
 - (c) A function $f \colon \mathbb{R} \to \mathbb{R}$ and sets $A, B \subset \mathbb{R}$ such that $f(A \cap B) \not\supseteq f(A) \cap f(B)$.
 - (d) A sequence of intervals $J_n = (a_n, b_n)$ where $a_n < b_n$ for all n and $J_1 \supseteq J_2 \supseteq J_3 \supseteq \ldots$, but

$$\bigcap_{n=1}^{\infty} J_n = \emptyset.$$

(e) A sequence of intervals $J_n = (a_n, b_n)$ where

$$a_1 < a_2 < a_3 < \dots < a_n < \dots < b_n < \dots < b_2 < b_1$$

but

$$\bigcap_{n=1}^{\infty} J_n \neq \emptyset$$

5. Suppose a, b, x, y > 0 and $\frac{a}{b} < \frac{x}{y}$. Prove that $\frac{a}{b} < \frac{a+x}{b+y}$.