ASSIGNMENT 9

13-November-2006

1. Let $f:(a, b) \rightarrow \mathbb{R}$ be continuous, with $(a, b) \subseteq \mathbb{R}$. Show that if $f(r)=0$ for each rational number $r \in(a, b)$, then $f(x)=0$ for all $x \in(a, b)$.
2. Let $f:(a, b) \rightarrow \mathbb{R}$ and $g:(a, b) \rightarrow \mathbb{R}$ be continuous, with $(a, b) \subseteq \mathbb{R}$, so that $f(r)=g(r)$ for each rational number $r \in(a, b)$. Prove that $f(x)=g(x)$ for all $x \in(a, b)$.
3. Define the function f by

$$
f(x)= \begin{cases}1 & \text { if } x \text { is rational; } \\ 0 & \text { otherwise. }\end{cases}
$$

Show that f is discontinuous at every $x \in \mathbb{R}$.
4. Define the function h by

$$
h(x)= \begin{cases}x & \text { if } x \text { is rational } \\ 0 & \text { otherwise }\end{cases}
$$

Show that h is continuous at $x=0$ and at no other point.
5. For each rational number x, write x as $\frac{p}{q}$ where p and q are integers with no common factors and $q>0$. Define the function g by

$$
g(x)= \begin{cases}\frac{1}{q} & \text { if } x \text { is rational } \\ 0 & \text { otherwise }\end{cases}
$$

Thus, $g(x)=1$ for all integers, $g\left(\frac{1}{2}\right)=g\left(-\frac{1}{2}\right)=g\left(\frac{3}{2}\right)=\frac{1}{2}$. Show that g is continuous at each irrational and discontinuous at each rational.
6. Let f and g be continuous functions on $[a, b]$ such that $f(a) \geq g(a)$ and $f(b) \leq g(b)$. Prove that $f\left(x_{0}\right)=g\left(x_{0}\right)$ for some $x_{0} \in[a, b]$.
7. Prove that $x 2^{x}=1$ for some $x \in(0,1)$.

