Problems for the Final Exam MATH 6101 - Fall 2008

- 1. Prove that $3 + 11 + \dots + (8n 5) = 4n^2 n$ for all natural numbers $n \in \mathbb{N}$.
- 2. Prove that $(2n+1) + (2n+3) + (2n+5) + \dots + (4n-1) = 3n^2$ for all natural numbers $n \in \mathbb{N}$.
- 3. The decimal number $0.a_1 \ldots a_s a_{s+1} \ldots a_t a_{s+1} \ldots a_t a_{s+1} \ldots$ is denoted by $0.a_1 \ldots a_s \overline{a_{s+1} \ldots a_t}$. Prove that every decimal number of the form $N.a_1 \ldots a_s \overline{a_{s+1} \ldots a_t}$ can be written as a rational number.
- 4. Use the formula

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

to prove that

$$\frac{\pi}{4} = 4 \arctan\left(\frac{1}{5}\right) - \arctan\left(\frac{1}{239}\right).$$

Use the series for arctangent discovered by Gregory

$$\arctan x = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7 + \dots,$$

through the x^7 term and a calculator to estimate the above value for π .

- 5. Does the sequence $\left\{\frac{1}{\sqrt[3]{n+1}-\sqrt[3]{n}}\right\}$ converge or diverge?
- 6. (a) Give an example of a bounded sequence or real numbers that does not converge.
 - (b) Give an example of a bounded sequence of rational numbers that converges to an irrational number.
 - (c) Give an example of a bounded sequence of irrational numbers that converges to a rational number.
 - (d) Give an example of a bounded sequence of irrational numbers that converges to an irrational number.
- 7. Let $a_1 = 1$ and $a_{n+1} = \frac{a_n^2 + 2}{2a_n}$ for $n \ge 1$. Assume that $\{a_n\}$ converges and find the limit.
- 8. Suppose that $a_0 > 0$, r > 0 and $a_{n+1} = r\left(a_n + \frac{1}{a_n}\right)$. For which values of r does $\{a_n\}$ converge and for which does it diverge? Find the value of the limit when it exists.
- 9. Prove that if $\sum a_n$ is a convergent series of nonnegative numbers and p > 1, then $\sum a_n^p$ converges.
- 10. Let $\{a_n\}$ be a sequence of nonzero real numbers such that the sequence $\{\frac{a_{n+1}}{a_n}\}$ is a constant sequence. Show that $\sum a_n$ is a geometric series.
- 11. Suppose that $a_0 = 1$ and $a_{n+1} = a_n + \frac{1}{n^2 a_n}$. Does $\{a_n\}$ converge or diverge. Hint: How can you think of this as a series?

- 12. Suppose that $a_n \ge 0$ and $\sum a_n$ converges. Prove that $\sum a_n^2$ also converges.
- 13. Suppose that $\sum a_n$ and $\sum b_n$ both converge. Prove that if $a_n \ge 0$ and $b_n \ge 0$, then $\sum a_n b_n$ also converges.
- 14. Suppose $\sum a_n$ and $\sum b_n$ both diverge. Does $\sum (a_n + b_n)$ necessarily diverge? If yes, why? If no, provide an example.
- 15. Prove that the power series $\sum n^n x^n$ converges only for x = 0.
- 16. Prove that the power series $\sum \frac{x^n}{n^n}$ converges for all x.
- 17. Suppose that there exist polynomials P(x) and Q(x) so that $c_n = \frac{P(n)}{Q(n)}$. Prove that the power series $\sum c_n x^n$ has radius of convergence $\rho = 1$.
- 18. Suppose that $f: \mathbb{R} \to \mathbb{R}$ is continuous and that f(a)f(b) < 0 for some $a, b \in \mathbb{R}$. Prove that there is an x between a and b such that f(x) = 0.
- 19. Suppose that f is continuous on [0, 2] and the f(0) = f(2). Prove that there exist $x, y \in [0, 2]$ so that |y x| = 1 and f(x) = f(y).
- 20. Suppose $f : \mathbb{R} \to \mathbb{R}$ be defined as follows:

$$f(x) = \begin{cases} x^2 & \text{if } x \text{ is rational} \\ -x^2 & \text{if } x \text{ is irrational} \end{cases}$$

Evaluate the following

(a)
$$\lim_{x \to 0} f(x)$$

(b) $\lim_{x \to 5} f(x)$

(c)
$$\lim_{x \to \sqrt{2}} f(x)$$