Problems for the Final Exam MATH 6101 - Fall 2008

1. Prove that $3+11+\cdots+(8 n-5)=4 n^{2}-n$ for all natural numbers $n \in \mathbb{N}$.
2. Prove that $(2 n+1)+(2 n+3)+(2 n+5)+\cdots+(4 n-1)=3 n^{2}$ for all natural numbers $n \in \mathbb{N}$.
3. The decimal number $0 . a_{1} \ldots a_{s} a_{s+1} \ldots a_{t} a_{s+1} \ldots a_{t} a_{s+1} \ldots$ is denoted by $0 . a_{1} \ldots a_{s} \overline{a_{s+1} \ldots a_{t}}$. Prove that every decimal number of the form $N \cdot a_{1} \ldots a_{s} \overline{a_{s+1} \ldots a_{t}}$ can be written as a rational number.
4. Use the formula

$$
\tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}
$$

to prove that

$$
\frac{\pi}{4}=4 \arctan \left(\frac{1}{5}\right)-\arctan \left(\frac{1}{239}\right) .
$$

Use the series for arctangent discovered by Gregory

$$
\arctan x=x-\frac{1}{3} x^{3}+\frac{1}{5} x^{5}-\frac{1}{7} x^{7}+\ldots,
$$

through the x^{7} term and a calculator to estimate the above value for π.
5. Does the sequence $\left\{\frac{1}{\sqrt[3]{n+1}-\sqrt[3]{n}}\right\}$ converge or diverge?
6. (a) Give an example of a bounded sequence or real numbers that does not converge.
(b) Give an example of a bounded sequence of rational numbers that converges to an irrational number.
(c) Give an example of a bounded sequence of irrational numbers that converges to a rational number.
(d) Give an example of a bounded sequence of irrational numbers that converges to an irrational number.
7. Let $a_{1}=1$ and $a_{n+1}=\frac{a_{n}^{2}+2}{2 a_{n}}$ for $n \geq 1$. Assume that $\left\{a_{n}\right\}$ converges and find the limit.
8. Suppose that $a_{0}>0, r>0$ and $a_{n+1}=r\left(a_{n}+\frac{1}{a_{n}}\right)$. For which values of r does $\left\{a_{n}\right\}$ converge and for which does it diverge? Find the value of the limit when it exists.
9. Prove that if $\sum a_{n}$ is a convergent series of nonnegative numbers and $p>1$, then $\sum a_{n}^{p}$ converges.
10. Let $\left\{a_{n}\right\}$ be a sequence of nonzero real numbers such that the sequence $\left\{\frac{a_{n+1}}{a_{n}}\right\}$ is a constant sequence. Show that $\sum a_{n}$ is a geometric series.
11. Suppose that $a_{0}=1$ and $a_{n+1}=a_{n}+\frac{1}{n^{2} a_{n}}$. Does $\left\{a_{n}\right\}$ converge or diverge. Hint: How can you think of this as a series?
12. Suppose that $a_{n} \geq 0$ and $\sum a_{n}$ converges. Prove that $\sum a_{n}^{2}$ also converges.
13. Suppose that $\sum a_{n}$ and $\sum b_{n}$ both converge. Prove that if $a_{n} \geq 0$ and $b_{n} \geq 0$, then $\sum a_{n} b_{n}$ also converges.
14. Suppose $\sum a_{n}$ and $\sum b_{n}$ both diverge. Does $\sum\left(a_{n}+b_{n}\right)$ necessarily diverge? If yes, why? If no, provide an example.
15. Prove that the power series $\sum n^{n} x^{n}$ converges only for $x=0$.
16. Prove that the power series $\sum \frac{x^{n}}{n^{n}}$ converges for all x.
17. Suppose that there exist polynomials $P(x)$ and $Q(x)$ so that $c_{n}=\frac{P(n)}{Q(n)}$. Prove that the power series $\sum c_{n} x^{n}$ has radius of convergence $\rho=1$.
18. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and that $f(a) f(b)<0$ for some $a, b \in \mathbb{R}$. Prove that there is an x between a and b such that $f(x)=0$.
19. Suppose that f is continuous on $[0,2]$ and the $f(0)=f(2)$. Prove that there exist $x, y \in[0,2]$ so that $|y-x|=1$ and $f(x)=f(y)$.
20. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined as follows:

$$
f(x)= \begin{cases}x^{2} & \text { if } x \text { is rational } \\ -x^{2} & \text { if } x \text { is irrational }\end{cases}
$$

Evaluate the following
(a) $\lim _{x \rightarrow 0} f(x)$
(b) $\lim _{x \rightarrow 5} f(x)$
(c) $\lim _{x \rightarrow \sqrt{2}} f(x)$

