1. Show that if $f: \mathbb{Q} \rightarrow \mathbb{R}$ has the properties that $f(0)=0$ and $f(x+y)=f(x)+f(y)$ for $x \in \mathbb{Q}$, then there is a number c such that $f(x)=c x$ for all $x \in \mathbb{Q}$.
Since $f(x+y)=f(x)+f(y)$, then $f(2)=f(1+1)=f(1)+f(1)=2 f(1)$, and then by induction, $f(n)=n f(1)$ for all integers n. Let $f(1)=c$. We then have that for every integer $n, f(n)=c n$. If $x \in \mathbb{Q}$ then $x=p / q$ for integers p and q. Thus, from the above properties, we have that $f(p / q)=p f(1 / q)$. Thus, we only need to find $f(1 / q)$.

Now, $c=f(1)=f(q / q)=q f(1 / q) \Rightarrow f(1 / q)=c / q=c(1 / q)$.
This means then that $f(x)=f(p / q)=p f(1 / q)=p c / q=c(p / q)=c x$.
2. Suppose that $\left\{a_{n}\right\}$ is a sequence such that $\left|a_{n}-a_{m}\right| \leq 1 /|m-n|$ for all indices m, n. Prove that $a_{0}=a_{1}=a_{2}=a_{3}=\ldots=a_{n}=\ldots$.
Fix m and let $\varepsilon>0$. For every $n \geq \max \{2 / \varepsilon, 2 m\}$ we know that

$$
\left|a_{n}-a_{m}\right| \leq 1 /|m-n| \leq \mathrm{n} / 2 \leq \varepsilon .
$$

Therefore $\left\{a_{n}\right\} \rightarrow a_{m}$. Since the limit of a sequence is unique and the sequence converges to each term, we must have that all the terms are equal.
3. Suppose that $\left\{a_{n}\right\} \rightarrow A$ and $b_{n}=\left(a_{n}+a_{n+1}\right) / 3$ for all n. Does $\left\{b_{n}\right\}$ converge or diverge?
By the additive property of limits, $\left\{b_{n}\right\} \rightarrow 2 \mathrm{~A} / 3$.
4. Let a be a fixed non-negative real number. Prove that $\lim _{n \rightarrow \infty} \sqrt[n]{a}=1$.

Assume that $a>1$. Then we can factor

$$
a-1=\left(a^{1 / n}-1\right)\left(a^{(n-1) / n}+a^{(n-2) / n}+\cdots+a^{1 / n}+1\right)
$$

by the Binomial Theorem. Since a >1, we have that $\mathrm{a}-1>0$ and all the terms in the second factor above are positive. Therefore,

$$
0<\frac{a-1}{a^{(n-1) / n}+a^{(n-2) / n}+\cdots+a^{1 / n}+1}=a^{1 / n}-1
$$

Now, each term in the denominator must be at least 1, which then gives us that

$$
\mathrm{0}<a^{1 / n}-1=\frac{a-1}{a^{(n-1) / n}+a^{(n-2) / n}+\cdots+a^{1 / n}+1}<\frac{a-1}{\underbrace{1+1+\cdots+1+1}_{n \text { times }}}=\frac{a-1}{n}
$$

Then by the Squeeze Theorem and the algebra of limits, we have

$$
\begin{gathered}
0<a^{1 / n}-1<\frac{a-1}{n} \\
\lim _{n \rightarrow \infty} 0<\lim _{n \rightarrow \infty}\left(a^{1 / n}-1\right)<\lim _{n \rightarrow \infty} \frac{a-1}{n} \\
0<\lim _{n \rightarrow \infty}\left(a^{1 / n}-1\right)<\lim _{n \rightarrow \infty} \frac{a}{n}-\lim _{n \rightarrow \infty} \frac{1}{n} \\
0<\lim _{n \rightarrow \infty}\left(a^{1 / n}-1\right)<a \lim _{n \rightarrow \infty} \frac{1}{n}-\lim _{n \rightarrow \infty} \frac{1}{n} \\
0<\lim _{n \rightarrow \infty}\left(a^{1 / n}-1\right)<0
\end{gathered}
$$

Therefore, $\lim _{n \rightarrow \infty} \sqrt[n]{a}=1$. If $0<a<1$, then $1 / a>1$ and the above result applies, again giving $\lim _{n \rightarrow \infty} \sqrt[n]{a}=1$.
5. Use the Binomial Theorem to prove that if $\mathrm{o}<a<1$, then $\lim _{n \rightarrow \infty} n a^{n}=0$.

Since $0<a<1$ we have that $1 / a>1$. Let $h=1 / a-1$ and we get that $a=\frac{1}{1+h}$ where $h>0$.

$$
\begin{aligned}
a^{n}= & \frac{1}{(1+h)^{n}}=\frac{1}{1+n h+\binom{n}{2} h^{2}+\ldots+h^{n}} \\
n a^{n} & =\frac{n}{1+n h+\binom{n}{2} h^{2}+\ldots+h^{n}} \\
& =\frac{1}{\frac{1}{n}+h+\frac{n-1}{2} h^{2}+\frac{(n-1)(n-2)}{6} h^{2}+\ldots+\frac{h^{n}}{n}}
\end{aligned}
$$

Therefore,

$$
\lim _{n \rightarrow \infty} n a^{n}=\lim _{n \rightarrow \infty}\left(\frac{1}{\frac{1}{n}+h+\frac{n-1}{2} h^{2}+\frac{(n-1)(n-2)}{6} h^{2}+\ldots+\frac{h^{n}}{n}}\right)=0
$$

6. Prove that .

$$
\lim _{m \rightarrow \infty}\left(\lim _{n \rightarrow \infty} \frac{m x}{m+n}\right)=0
$$

whereas

$$
\lim _{n \rightarrow \infty}\left(\lim _{m \rightarrow \infty} \frac{m x}{m+n}\right)=x
$$

Let's do the second one first.

$$
\lim _{n \rightarrow \infty}\left(\lim _{m \rightarrow \infty} \frac{m x}{m+n}\right)=\lim _{n \rightarrow \infty}\left(\lim _{m \rightarrow \infty} \frac{m x}{m}\right)=\lim _{n \rightarrow \infty}\left(\lim _{m \rightarrow \infty} x\right)=x .
$$

Now,

$$
\lim _{m \rightarrow \infty}\left(\lim _{n \rightarrow \infty} \frac{m x}{m+n}\right)=\lim _{m \rightarrow \infty}\left(\lim _{n \rightarrow \infty} \frac{m x}{n}\right)=\lim _{m \rightarrow \infty}(\mathrm{o})=\mathbf{0}
$$

7. Suppose that $a_{n+1}=\left(a_{n}-1\right) / 2$ for $n=0,1,2, \ldots$. Prove that $\left\{a_{n}\right\} \rightarrow-1$.

If $a_{n+1}=\left(a_{n}-1\right) / 2$, then

$$
\begin{aligned}
\lim _{n \rightarrow \infty} a_{n+1} & =\lim _{n \rightarrow \infty} \frac{a_{n}-1}{2} \\
L & =\frac{\lim _{n \rightarrow \infty} a_{n}-1}{2} \\
L & =\frac{L-1}{2} \\
2 L & =L-1 \\
L & =-1
\end{aligned}
$$

