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MATH 6101 090 Solutions Assignment 7 

1. Show that if →:f has the properties that f (0) = 0 and f (x + y) = f (x) + f (y) 
for ∈x , then there is a number c such that f (x)=cx for all ∈x . 
Since f (x + y) = f (x) + f (y), then f (2) = f (1+1)=f (1) + f (1) = 2f (1), and then by 
induction, f (n) = nf (1) for all integers n.  Let f (1) = c.  We then have that for 
every integer n, f (n) =cn.  If ∈x  then x = p/q for integers p and q.  Thus, from 
the above properties, we have that f (p/q) = pf (1/q).  Thus, we only need to find  
f (1/q). 
 
Now, ( )= = = ⇒ = =(1) ( ) (1 ) (1 ) 1c f f q q qf q f q c q c q . 

This means then that ( )= = = = =( ) ( ) (1 )f x f p q p f q pc q c p q cx . 

 
2. Suppose that {an} is a sequence such that |an – am| ≤ 1/|m – n| for all indices m, 

n.  Prove that a0 = a1 = a2 = a3 = … = an =…. 
Fix m and let ε > 0.  For every n ≥ max{2/ε,2m} we know that  

|an – am| ≤ 1/|m – n| ≤ n/2 ≤ ε. 
Therefore {an} Ø am.  Since the limit of a sequence is unique and the sequence 
converges to each term, we must have that all the terms are equal. 
 

3. Suppose that {an} Ø A and bn = (an+ an+1)/3 for all n.  Does {bn} converge or 
diverge? 
By the additive property of limits, {bn} Ø 2A/3. 
 

4. Let a be a fixed non-negative real number. Prove that 
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Assume that a > 1. Then we can factor  
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by the Binomial Theorem. Since a > 1, we have that a – 1 > 0 and all the terms in 
the second factor above are positive.  Therefore, 
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Now, each term in the denominator must be at least 1, which then gives us that  
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Then by the Squeeze Theorem and the algebra of limits, we have 
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Therefore, 
→∞

=lim 1
n

n a .  If < <0 1a , then >1 1a  and the above result applies, 

again giving 
→∞

=lim 1
n

n a . 

 
5. Use the Binomial Theorem to prove that if 0 < a < 1, then 
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nna . 

Since 0 < a < 1 we have that 1/a > 1.  Let h = 1/a – 1 and we get that 
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where h > 0.  
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Therefore, 
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6. Prove that . 

→∞ →∞
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whereas 
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Let’s do the second one first. 
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7. Suppose that an+1 = (an – 1)/2 for n = 0,1,2,….  Prove that {an} Ø –1. 

 
If an+1 = (an – 1)/2, then  
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