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Euler and Trigonometric Series
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Sums of Series

What do we know about sums of series?

How many series sums do we know? can we find?
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Sums of Series
In a like manner we can show that
= 26
n=1 2

On the other hand we know that

0

zi diverges.

n=1
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How about i% ?

n=1

First, does it converge?

Yy L

2
We know that 2n2=n(n+1)so ——— > —
n(n+1) n
<
=
Therefore, it does converges. But to what?
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Jakob Bernoulli considered it and failed to find
it. So did Mengoli and Leibniz. Finding the
sum became known as the Basel Problem.

We will look at how Euler solved the problem.
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Euler’s Sum
Theorem [Euler, 1735]: 1 _ ”_2

This was a huge surprise, as no one expected ;1
to appear in the sum at all!!

Euler’s Proof: Let p(x) be a polynomial of
degree n with the following properties

1. p(x) has non-zero roots a,, a,, ..., a,.

2. p(o)=1
Then we can write:
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Euler claims that “what holds for a finite
polynomial holds for an infinite polynomial”.
He considers the infinite polynomial.
x* xt xf
p(X): 1*54’;*;4’"’
which is an infinite polynomial with p(0) = 1.

p(x)=

1
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Euler’s Sum
Euler knew an infinite polynomial for sin(x).

x5 x7 2k+1

3
Sin(x):x_xi+7_7+ "-‘r(—l)ku X 4.

3t 5 7l
So Euler noticed that xp(x)

(2k +1)!

3 5 7
xp(x)= P . ST sin(x)
3t 5t 7!
From the properties of the sine function we
know that this infinite polynomial has zeros at
x=+kr fork=1,2,3,...
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Euler’s Sum
From his claim above, Euler could write this
polynomial as an infinite product.
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Now, we can multiply out the product and
collect coefficients of like powers.

x> x* x° 1 1 1 1
1—— ee=1—

7 4r° 9or® 16x°

Equating the coefficients of x2, we get

1 1 1 1
2 2 2 2 +oo
n°  4m* 9n® 167 ]
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Euler did not stop there. He had a good thing
going.

50 i - 7[4
=nt 90
P z
=n® 945
In 1744 he obtained
i 1 2%769779277%
= n* 27!
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Euler’s Trigonometric Sums
Euler took what we knew for real numbers and
pushed it to complex numbers.

1 A
——=1+x+x*
1-x

and replace x by the complex number
z=a(cos @+ 1isin )

1 2 p
=1+2+2"+2°+-
1-z

1

——————————=1+|a(cosp+ising)|+|alcosp + isin(zz)]2 +a(cosp+ isin(p)]3 +-
1—a(cosp+1sing)
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Euler chose to look at the case a = —1. Proceed
by rationalizing the denominator

1 - 1 1+cosp—ising
1+(cosp+ising) 1+(cosp+ising) 1+cosp—ising
~ 1+4cosp—ising  1+cosp—ising
" (1+cosp) +sin®p  2(1+cosg)
1 ising
T2 2(1+cosp)
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On the right hand side, use De Moivre’s
Theorem: (cosg+ising)* = coskp+isinke

1—(cosp +ising)+(cosp+ising)* —(cosgp+ising)® +---
=1—(cosp+ising)+(cos2¢+isin2¢) —(cos3¢ +isin3p) +---
= (17c0s¢+cos2gofcos3w+---)7i(singofsinzw+sin3w+-~)

Equating the real parts of the equation gives:

1 1—COS(p+COS2¢ —COS 3P + COS 4 — COS50 +---
2

COS @ —COS2¢ +COS3¢p —COS4¢p+ COS5p —--- .
2
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Euler’s Trigonometric Sums

Integrate with respect to ¢.

sinrpflsin2(p+lsin3¢77lsin4¢+isin5¢f---*£+C
2 3 4 5 2
Since sin(0) = 0, we have C = 0 and
. 1. 1. 1. 1. )
SIN@ ——SIN2¢ +—SIN3¢ ——SIN4Q +—SIN5¢0 — -+ = —
2 3 4 5 2
Integrate again with respect to .
1 1 1 1 s
COS@p ——COS2¢ +—C0S 3P ——C0S4p + —Ccos5p—--=——+C
4 9 16 25 4

Since cos(0) = 1, we have
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111 1 ENCEI
4 9 16 25 =
What is C? Is it related to the previous sum?

Use the fact that cos(2;1+a) = cos a, make the
substitution ¢ = 7/2 and we get
(”/ 2)2 T o1 1 37

1 1 57
C —-———=C08S———COST +—COS=———COS47T +—COS——-"
4 2 4 9 2 16 25
0+ t0- Lot
4 16 36

R P _c

4 4 9 16 4
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Euler’s Trigonometric Sums

=) _c
4 4
3C _ (a/2)’
4 4
c-Z

12

You can use this process to show the previous
sum, as well.
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Euler’s Trigonometric Sums

Note that from our earlier results, for
x € (o1,—01).

. 1. 1. 1. 1.
x=2 s1nx77s1n2x+7s1n3x77s1n4x+751n5x7~~]
2 3 4 5

N z° 1 1 1
X~ =4|——C0SX——C0S2X +—C0S3X ——C0S4X +—COS5X —
12 4 9 16 25

This ability to represent functions as
trigonometric series languished until the work
of Fourier in 1807 when he showed that these
trigonometric series could be used to model the
propagation of heat through a material.
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Euler’s Trigonometric Sums
Note:

. 1. 1 . 1 . 1.
xX=2 smxffsmzx+fsm3x7751n4x+fsm5x7---]
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Your Turn
Show:
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