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MATH 6101
Fall 2008

The Real Number System

The Natural Numbers, N
How did the concept of number arise?

Pythagoreans: “All is number”
Separated number from magnitude – numbers were Separated number from magnitude numbers were 
considered more as distinct points

Allows addition, subtraction, multiplication – what 
about division?

Used “submultiple”: given the number 15 we say that 5 
is a submultiple of 15 because 3 x 5 = 15.
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Natural Numbers
Definition 1: The submultiple, which is by its 
nature the smaller, is the number which when 
compared with the greater can measure it more 
times than one so as to fill it out exactly.

M i d  di i  f  b  b  h  
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Magnitudes are distinct from numbers but have 
different properties.

All numbers by definition were positive integer 
multiples of a base unit but ratios of lengths were 
shown not to have the property of being ratios of 
number.
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Rational Numbers
To the Greek mathematicians, the number 
system was augmented by those 
numbers/lengths which were the ratios of 
other lengths.

There were those that were the ratios of 
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There were those that were the ratios of 
integers and those that were not 
commensurable with the unit.  

The existence of numbers that were not 
rational was well known. (Plato)

Euclid’s Rational Numbers
Euclid defined the ratio of magnitudes.

When are two magnitudes are in the same ratio 
as a second pair of magnitudes? 

Euclid – a:b = c:d if given any natural numbers 
d  h  
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n and m we have 

na > mb if and only if nc > md
na = mb if and only if nc = md
na < mb if and only if nc < md

Euclid’s Rational Numbers
Euclid - Book VII Number

First he defines a unit, then a number is 
defined as being composed of a multitude of 
units, and parts and multiples are defined as 
for magnitudes  
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for magnitudes. 

Euclid, as earlier Greek mathematicians, did 
not consider 1 as a number. It was a unit and 
the numbers 2, 3, 4, ... were composed of units.
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Euclid’s Rational Numbers
Proportion for numbers

He shows that for numbers a, b, c, d that 
a:b = c:d when the least numbers with ratio a:b are 
the same as the least numbers with ratio c:d. 

(a/b = c/d if they become the same when reduced to 
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( /b = /d if they become the same when reduced to 
lowest terms)

An important result in Book VII is the Euclidean 
algorithm. 

Note that Euclid never identified the ratio 2:1 with 
the number 2. These were two quite different 
concepts.

Euclid’s Numbers
Euclid left us with magnitudes which had 
lengths which, in modern terms, could be 
formed from positive integers by 

• addition, 

bt ti  
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• subtraction, 

• multiplication, 

• division and 

• taking square roots. 

Next Steps
•Arabic mathematicians (Omar Khayyam) 
showed how to solve all cubic equations by 
geometric methods.
•Fibonacci solved a cubic equation showing 
that its root was not formed from rationals and 
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square roots of rationals as Euclid’s 
magnitudes were.  
•By the end of the 15th century mathematicians 
were using expressions built from positive 
integers by addition, subtraction, 
multiplication, division and taking nth roots. 
These are called radical expressions.
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Next Steps
By the 16th century rational numbers and roots 
of numbers were accepted as numbers.

Still a sharp distinction between these different 
t  f b
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types of numbers

Stifel (Arithmetica Integra, 1544) argues that 
irrationals must be considered valid numbers.

Decimals
Stevin (La Theinde, 1585) introduced decimal 
fractions. 

Only finite decimals were allowed

Only certain rationals to be represented exactly

Other rationals could be represented approximately 
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Other rationals could be represented approximately 

Intent was to calculate with approximate rational 
values. 

Notation taken up by Clavius and Napier 

Others saw it as a backwards step - it could not 
even represent 1/3 exactly.

Decimals
•Stevin (L'Arithmetique , 1585)made a number 
of important advances in the study of the real 
numbers. 
•He argued that all numbers such as square 
roots, irrational numbers, surds, negative 
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numbers etc should all be treated as numbers 
and not distinguished as being different in 
nature.
•He argued against the Greek idea that 1 is not 
a number but a unit and the numbers 2, 3, 4, ... 
were composed of units.
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Another Century Passes
John Wallis (A treatise of Algebra, 1684) 
accepts the use of Stevin’s decimals. 

Still only considers finite decimal expansions

Realizes that with these one can approximate 
numbers (for him constructed from positive 
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numbers (for him constructed from positive 
integers by addition, subtraction, multiplication, 
division, taking nth roots) as closely as one wishes. 

He understood there were proportions which did 
not fall within this definition of number, such as 
those associated with the area and circumference of 
a circle.

Another Century Passes
Wallis considered approximations by continued 

fractions and approximations by taking 
successive square roots. 
This led to the study of infinite series but without the 
machinery to prove convergence
Real numbers became very much associated with 
magnitudes  
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magnitudes. 

No definition was really thought necessary
Euler (Complete introduction to algebra, 1771) 

wrote -
Mathematics, in general, is the science of 
quantity; or, the science which investigates the 
means of measuring quantity.

Euler’s Impact
Euler defined the notion of quantity as that which 
can be continuously increased or diminished 

Thought of length, area, volume, mass, velocity, time, 
etc. to be different examples of quantity
All could be measured by real numbers

This led to a more abstract idea of quantity, a 
i bl  hi h d t il  t k  l 
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variable x which need not necessarily take real 
values
Symbolic mathematics took the notion of quantity 
too far
By the beginning of the 19th century a more 
rigorous approach to mathematics by Cauchy and 
Bolzano began to provide the machinery to put the 
real numbers on a firmer footing. 
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Cauchy
Cauchy (Cours d'analyse, 1821) did not give a 
careful definition of the real numbers. 

He does say that a real number is the limit of a 
sequence of rational numbers (but he is assuming 
here that the real numbers are known)
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)

This is not considered to be a definition of a real 
number, rather it is simply a statement of what he 
considers an obvious property.

(Avoids the question of how one is to define 
convergence of a sequence without assuming the 
existence of its limit)

Bolzano
Bolzano (1817) showed that any bounded 
Cauchy sequence of real numbers had a least 
upper bound. 
Later worked out his own theory of real 
numbers which he did not publish
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His definition of a real number was made in 
terms of convergent sequences of rational 
numbers
Since these were unpublished they had little 
influence in the development of the theory of 
the real numbers.

Transcendental Numbers
Up to this time there was no proof that 
numbers existed that were not the roots of 
polynomial equations with rational 
coefficients. 

Clearly √2 is the root of a polynomial equation 
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Clearly √2 is the root of a polynomial equation 
with rational coefficients, namely x2 = 2

All roots of rational numbers arise as solutions 
of such equations. 
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Transcendental Numbers
A number is called transcendental if it is not 
the root of a polynomial equation with rational 
coefficients. 

The word transcendental is used as such a 
number transcends the usual operations of 
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number transcends the usual operations of 
arithmetic 

Mathematicians guessed for a long time that π 
and e were transcendental, but not proven up 
to the middle of the 19th century. 

Liouville
Liouville’s interest in transcendental numbers 
stemmed from reading a correspondence 
between Goldbach and Daniel Bernoulli. 

Liouville wanted to prove that e is 
transcendental but he did not succeed  
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transcendental but he did not succeed. 

His contributions led him to prove the 
existence of a transcendental number in 1844 
when he constructed an infinite class of such 
numbers using continued fractions.

Liouville
In 1851 he published results on transcendental 
numbers removing the dependence on 
continued fractions. 

The Liouville number 
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0.1100010000000000000000010000... 

where there is a 1 in place n! and 0 elsewhere is 
a transcendental number 
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Liouville
1873 – Hermite showed e is transcendental
1882 – Lindemann showed π is transcendental
1900 – Hilbert proposed the following 
problem: If α, β are algebraic and α≠ 0, 1 and 
β is irrational, prove that αβ is transcendental.
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β is irrational, prove that α is transcendental.
1934 – Gelfond and Schneider proved the 
statement true.
We still do not know if e±π, ee, ππ, πe are 
transcendental.
We do know that at least one of e+π and πe is 
transcendental

Known Transcendentals
We do know that the following are 
transcendental:

–ln 2

–ln 3/ln 2

sin (a)  cos(a)  tan(a)  a a nonzero rational 

15-Oct-2008 MATH 6101 23

–sin (a), cos(a), tan(a), a a nonzero rational 

–arctan(x)/ π for x rational

eπ = (eiπ )-i =(-1)i is transcendental

ii = e-π/2 is transcendental

2√2 is transcendental

Foundations of Real Numbers
• Dedekind worked out his theory of Dedekind 

cuts in 1858 but it remained unpublished 
until 1872. 

• Weierstrass gave his own theory of real 
numbers in his Berlin lectures beginning in 
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numbers in his Berlin lectures beginning in 
1865 but this work was not published. 

• The first published contribution came in 
1867 from Hankel a student of Weierstrass. 
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Foundations of Real Numbers
Hankel suggested a complete change in our point 

of view regarding the concept of a real number:-
Today number is no longer an object, a 
substance which exists outside the thinking 
subject and the objects giving rise to this 
substance, an independent principle, as it 

 f  i  f  h  P h  
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was for instance for the Pythagoreans. 
Therefore, the question of the existence of 
numbers can only refer to the thinking 
subject or to those objects of thought whose 
relations are represented by numbers. 
Strictly speaking, only that which is logically 
impossible (i.e. which contradicts itself)
counts as impossible for the mathematician.

Foundations of Real Numbers
• Méray (Remarques sur la nature des quantités, 

1869) considered Cauchy sequences of rational 
numbers which, if they did not converge to a 
rational limit, had what he called a fictitious limit. 
Considered the real numbers = the rational numbers 
and his fictitious limits  
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and his fictitious limits. 

• Heine (Elemente der Functionenlehre, 1872) 
published a similar notion though done 
independently of Méray. It was similar in nature 
with the ideas which Weierstrass had discussed in 
his lectures. 

• Heine's system is one of the two standard ways of 
defining the real numbers today. 

Foundations of Real Numbers
• Heine looks at Cauchy sequences of rational 

numbers. He defines an equivalence relation on 
such sequences by defining a1 , a2 , a3 , a4 , ... and b1, 
b2 , b3 , b4 , ... to be equivalent if the sequence of 
rational numbers a1 - b1, a2 - b2 , a3 - b3 , a4 - b4 , ... 
converges to 0  
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converges to 0. 

• He introduced arithmetic operations on his 
sequences and an order relation. (Care is needed to 
handle division since sequences with a non-zero 
limit might still have terms equal to 0.)



10/15/2008

10

Foundations of Real Numbers
• Cantor also published his version of the real 

numbers in 1872 

• It followed a similar method to that of Heine. 

• His numbers were Cauchy sequences of 
ti l b  d h  d th  t  
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rational numbers and he used the term 
determinate limit. 

Foundations of Real Numbers
• Cantor realized that if he wanted the line to represent the real 

numbers then he has to introduce an axiom to recover the 
connection between the way the real numbers are now being 
defined and the old concept of measurement. 

• He writes about a distance of a point from the origin on the 
line

d l h i d i hi

15-Oct-2008 MATH 6101 29

... In order to complete the connection presented in this 
section of the domains of the quantities defined [his 
determinate limits] with the geometry of the straight line, one 
must add an axiom which simple says that every numerical 
quantity also has a determined point on the straight line 
whose coordinate is equal to that quantity, indeed, equal in 
the sense in which this is explained in this section.

Dedekind’s Work
• When Dedekind realized that Heine and Cantor 

were about to publish their versions of a rigorous 
definition of the real numbers he decided that he 
should publish his ideas. 

• In 1872 he published another definition of the real 
b  
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numbers. 

• Dedekind considered all decompositions of the 
rational numbers into two sets A1 , A2 so that a1 < a2

for all a1 in A1 and a2 in A2. He called (A1, A2) a cut 
(Schnitt). If the rational a is either the maximum 
element of A1 or the minimum element of A2 then he 
said the cut was produced by a. 
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Dedekind’s Work
• However not all cuts were produced by a rational. 

In every case in which a cut (A1, A2) is given that is 
not produced by a rational number, we create a 
new number, an irrational number a, which we 
consider to be completely defined by this cut; we 

ill  th t th  b   d  t  thi  t 
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will say that the number a corresponds to this cut 
or that it produces the cut.

• He defined the usual arithmetic operations and 
ordering and showed that the usual laws apply.

Further Work
• Another definition appeared in a book by 

Thomae in 1880. Thomae was a colleague of 
Heine and Cantor. 

• He claimed that the real numbers defined in 
this way had a right to exist because  the 
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this way had a right to exist because ... the 
rules of combination abstracted from 
calculations with integers may be applied to 
them without contradiction.

Further Work
• Frege attacked these ideas of Thomae . 

• He wanted to develop a theory of real numbers 
based on a purely logical base and attacked the 
philosophy behind the constructions which had been 
published. 
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• Thomae in 1898 “The formal conception of numbers 
requires of itself more modest limitations than does 
the logical conception. It does not ask, what are and 
what shall the numbers be, but it asks, what does 
one require of numbers in arithmetic.”
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Further Work
• Frege was still unhappy with the 

constructions of Weierstrass, Heine, Cantor, 
Thomae and Dedekind. 

• How does one know that these constructions 
led to systems which would not produced 
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led to systems which would not produced 
contradictions? 

• Frege, however, never completed his own 
version of a logical framework. His hopes 
were shattered when he learnt of Russell's 
paradox. 

Hilbert’s Work
• Hilbert in 1900 took a different approach to 

defining the real numbers. 

• He defined the real numbers to be a system 
with eighteen axioms. Sixteen of these 
axioms define what today we call an ordered 
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axioms define what today we call an ordered 
field, while the other two were the 
Archimedean axiom and the completeness 
axiom. 

Hilbert’s Work
• The Archimedean axiom stated that given 

positive numbers a and b then it is possible 
to add a to itself a finite number of times so 
that the sum exceed b. 

• The completeness property says that one 
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• The completeness property says that one 
cannot extend the system and maintain the 
validity of all the other axioms. 
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Hilbert’s Work
• This was totally new since all other methods 

built the real numbers from the known 
rational numbers. 

• Hilbert's numbers were unconnected with 
any known system  It was impossible to say 
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any known system. It was impossible to say 
whether a given mathematical object was a 
real number. 

• There was no proof that any such system 
actually existed

Fields
A field is a set F with two binary operations + and × for which the 
following hold.  For any elements a, b, c in F:

a. a + b ε F, a × b ε F

b. (a + b) + c = a + (b + c), (a × b) × c = a × (b × c)

c. a + b = b + a, a × b = b × a

d. a × (b + c) = (a × b) + (a × c)
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d. a (b c)  (a b)  (a c)

e. There are distinct elements 0,1 ε F so that a + 0 = a, and  
a × 1 = a

f. There is –a ε F so that a + (–a) = 0 

g. If a ≠ 0, then there is a-1 ε F so that a × a-1 = 1.

Field Consequences
Lemma: If F is a field and a, b, c ε F, then:

a. a + b = a + c implies that a = b

b. a × 0 = 0

c. (– a) × b = –(a × b)

d. (– a) × (– b) = a × b

e a × b = a × c and a ≠ 0 then b = c
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e. a × b = a × c and a ≠ 0 then b = c

f. If a × b = 0, then either a = 0 or b = 0.
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Ordered Field
A field F is an ordered field if there is a binary relation ≤ on its 
elements  that has the following properties for a, b, c ε F:

a. Either a ≤ b or b ≤ a

b. If a ≤ b and b ≤ a then a = b

c. If a ≤ b and b ≤ c then a ≤ c 

d. If a ≤ b then a + c ≤ b + c 
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d. If a ≤ b then a  c ≤ b  c 

e. If a ≤ b and c ≤ 0 then a × c ≤ b × c 

Bounded Sets
If S is a finite set of elements in an ordered field, then max S
denotes the largest element in S.

If S is a set of elements in an ordered field, and b is any element so 
that r ≤ b for any r in S then b is called an upper bound for S and 
S is said to be bounded above by b.

If S is a set of elements in an ordered field, and b is any element so 
h b f i h b i ll d l b d f d
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that b ≤ r for any r in S then b is called a lower bound for S and S
is said to be bounded below by b.

If S is a set of elements in an ordered field, and b is any element 
so that |r| ≤ b for any r in S then b is called a bound for S and S
is said to be bounded by b.

Lemma:  If S1, S2, …, Sn are bounded sets, then S1∪S2 ∪ … ∪ Sn is 
also bounded.

Least Upper Bounds
If b* is an upper bound for a set S so that b* ≤ b for every upper 
bound b of S then b* is called a least upper bound for S.

Lemma:  b* is unique.

If d* is a lower bound for a set S so that d ≤ d* for every lower 
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If d is a lower bound for a set S so that d ≤ d  for every lower 
bound d of S then d* is called the greatest lower bound for S.

Question:  Is the empty set bounded above?  Does the empty set 
have a least upper bound?
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Different Fields - Different Results
Let  S = { r ε R | r2 ≤ 2}.  S is bounded .  What is the least upper 
bound for S?

Now,  let  T = { r ε Q | r2 ≤ 2}.  T is bounded .  What is the least 
upper bound for T in Q? 
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This is the essential difference between the reals and rationals.  
This is embodied in the following axiom satisfied by the reals.

Axiom: (Completeness or Least Upper Bound Axiom)  Every 
non-empty set of real numbers that is bounded above has a least 
upper bound.

The Real Numbers
Following Hilbert’s lead we then define the real number system to 
be an ordered field that satisfies the Least Upper Bound Axiom.

Proposition: Given any real number r, there is an integer n so 
that n ≤ r < n + 1.
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Proposition: Given r is a non-zero rational number and a is an 
irrational number then the numbers  a ± r, ar, a/r, and r/a are 
all irrational.

Proposition: If a < b are real numbers, then there exists both a 
rational and an irrational number between a and b.


