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MATH 6101
Fall 2008

Functions, Sequences and Limits

The Topology of the Reals

We will make some simple definitions.  Let a and b
be any two real numbers with a < b.

(a,b) = { x є R | a < x < b}
[a,b] = { x є R | a ≤ x ≤ b}
(a,b] = { x є R | a < x ≤ b}
[a,b) = { x є R | a ≤ x < b}
(a,∞) = { x є R | a < x }
[a,∞) = { x є R | a ≤ x }
(–∞,b) = { x є R | x < b }
(–∞,b] = { x є R | x ≤ b }
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Topology of the Reals
If r є R then a neighborhood of r is an open 
interval (a,b) so that r є (a,b).

The neighborhood is centered at r if 
 (  b)/  
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r = (a + b)/2 

If ε and a are reals, then the ε-neighborhood of 
a is the interval (a – ε, a + ε)
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Functions
Nicole Oresme – 1350 – described the laws of 
nature as laws giving a dependence of one 
quantity on another.
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History of Function
Galileo – 1638 – studies of motion contain the 
clear understanding of a relation between 
variables
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History of Function
Descartes - an equation in two variables, 
geometrically represented by a curve, indicates 
a dependence between variable quantities
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Euclid’s Rational Numbers
Newton – showed how functions arise from 
infinite power series

Leibniz – 1673 – the first to use the term 
function. He took function to designate, in very 
general terms  the dependence of geometrical 
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general terms, the dependence of geometrical 
quantities on the shape of a curve.

History of Function
• Jean Bernoulli - 1718 - function of a variable 

as a quantity that is composed in some way 
from that variable and constants

• Euler – 1748 - A function of a variable 
quantity is an analytic expression composed 
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in any way whatsoever of the variable 
quantity and numbers or constant quantities.

• Euler – 1755 - If some quantities so depend 
on other quantities that if the latter are 
changed the former undergoes change, then 
the former quantities are called functions of 
the latter.

History of Function
• Cauchy – 1821 – still thinking of a function 

in terms of a formula (either explicit or 
implicit)

• Fourier – 1822 – introduced general Fourier 
series but fell back on old definitions
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• Dirichlet – 1837 – defined general function 
and continuity (in modern terms)

• Weierstrauss – 1885 – any continuous 
function is the limit of a uniformly 
convergent sequence of polynomials

• Goursat – 1923 – modern definition
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Definitions
Bernoulli – 1718 – One calls here a function of 
a variable a quantity composed in any 
manner whatever of this variable and 
constants.
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Basically this meant +, –, ×, ÷, √, logs and 
sines. 

They would say that f (x) depended 
analytically on the variable x.

Definitions
Fourier – 1822 – In general the function f(x) 
represents a succession or ordinates each of 
which is arbitrary. An infinity of values being 
given to the abscissa x, there area an equal 
number of ordinates f(x). All have actual 
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number of ordinates f(x). All have actual 
numerical values, either positive or negative 
or null. We do not suppose these ordinates to 
be subject to common law; the succeed each 
other in any manner whatever, and each of 
them is given as it were a single quantity.

Definitions
Fourier removed the requirement of “analytic” 
from the definition.  It was not widely accepted 
for years.
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Definitions
Dirichlet – 1837 – Let us suppose that a and b are 
two definite values and x is a variable  quantity which 
is to assume, gradually, all values located between a 
and b. Now, if to each x there corresponds a unique, 
finite y …, then y is called a … function of x for this 
i t l   It i   t t ll  th t  
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interval.  It is, moreover, not at all necessary, that y 
depends on x in this whole interval according to the 
same law; indeed, it is not necessary to think of only 
relations that can be expressed by mathematical 
operations.

Definitions
Every “Bernoulli” function is a “Fourier” or a 
“Dirichlet” function.

Dirichlet:
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1 if  is rational and 0 1
( )

0 if  is irrational and 0 1

x x
f x

x x

ì £ £ïï=íï £ £ïî

Another “Bad Example”
d’Alembert was working on the problem of 
describing a vibrating string.  The initial 
position for the string is not the graph of any 
analytical expression.
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A More Modern Definition
Let D be a set of real numbers.  A function 

f: D R
is a rule that assigns a number f (x) to every 
element x of D. 

22-Oct-2008 MATH 6101 16

Modern Set Theory Definition
A function ƒ is an ordered triple of sets (F,X,Y) with 

restrictions, where F (the graph) is a set of ordered pairs (x,y), X
(the source) contains all the first elements of F and perhaps 
more, and Y (the target) contains all the second elements of F
and perhaps more. 

The most common restrictions are that F pairs each x with 
just one y, and that X is just the set of first elements of F and no 
more.

When no restrictions are placed on F, we speak of a relation
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When no restrictions are placed on F, we speak of a relation
between X and Y rather than a function. The relation is “single-
valued” when the first restriction holds: (x,y1) F and (x,y2) F
together imply y1 = y2. 

Relations that are not single valued are sometimes called 
multivalued functions. A relation is total when a second 
restriction holds: if x X then (x,y) F for some y. Thus we can 
also say that

A function from X to Y is a single-valued, total relation 
between X and Y.

Sequences
Let N = the set of natural numbers (it will not 
matter if it starts with 0 or with 1).

A sequence is a function a: N R.
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We will normally denote a sequence by its set 
of outputs {an}, where an = a(n). 

Occasionally you will see a0, a1, a2, a3, … or 
{an}∞n=0
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Examples
1) {1,2,3,4,5,6,…} – an arithmetic progression

(f (n) = n)

2) {a + bn | n=0,1,2,3,…} – a different type of 
arithmetic progression – (f (n) = a + bn)
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3) {a0,a1,a2,a3,a4,…} – a geometric progression

(f (n) = an)

4) {1,¹/²  ,¹/³  ,¹/⁴ ,¹/⁵ ,…}  - (f (n) = 1/n)

5) f (n) = an =(-1)n.  Note that the range is 

{-1,1}

Examples
1) f (n) = an = cos(πn/³) 

a1 = cos(π/³) =cos 60° = ¹/²     
{an} =  {½, -½, -1, -½, ½, 1,½, -½, -1, -½, ½, 1, 
…}.  The function takes on only a finite number of 
values, but the sequence has an infinite number of 
elements.

2) f (n) = a = n1/n
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2) f (n) = an = n / ,
{ 1, 21/2, 31/3,41/4,…} = {1, 1.41421, 1.44225, 1.41421, 
1.37973, 1.34801, 1.32047, 1.29684, 1.27652, 
1.25893,…} 
Also a100=1.04713, a10,000 = 1.00092

3) bn = (1+1/n)n

{2, (3/2)2, (4/3)3, (54)4,…} = {2, 2.25, 2.37037, 
2.44141, 2.48832, 2.52163, 2.54650, 2.56578, 
2.58117, 2.59374,…}
Also a100=2.74081 and a10,000 = 2.71815

Almost all … 
Definition: It is said that almost all the terms 
of the sequence {an} have a certain property 
provided that there is an index N such that {an} 
possesses this property whenever n ≥ N.
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Convergence
Definition 1: A sequence  of real numbers is said to 
converge to a real number L if for every 
ε > 0 there is an integer N > 0 such that if 
k > N then |ak - L| < ε. 
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Definition 2: A sequence  of real numbers is said to 
converge to a real number L if every neighborhood 
of L contains almost all of the terms of {an}. 

The number L is called the limit of the sequence.

Convergence
Lemma 1: The sequence  {1/n} converges to 0.

Proof : Let (a,b) be any neighborhood of 0.  
This means that a < 0 < b.  Let N>[1/b], be an 
integer greater than 1/b.  Then 1/ N < b and for 
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tege  g eate  t a  /b.  e  / N  b a d o  
every integer n > N, we have that 

a < 0 < 1/n < 1/ N < b
and (a,b) contains almost all of the elements of 
the sequence.  Thus, the sequence converges to 
0.

Convergence
Lemma 1: The sequence  {1/n} converges to 0.

Proof : You prove this using Definition 1.
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Convergence
Definition: A sequence  is convergent if it has a 
limit.  If it is not convergent it is called 
divergent.

Lemma 2: The sequence {an} converges to L if 
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Lemma 2: The sequence {an} converges to L if 
and only if every neighborhood of L that is 
centered at L contains almost all of the terms 
of the sequence.

Note that this tells us that the two definitions 
are the same.

Example
Let an = n/2n. {an} = {1/2, 2/22, 3/23, 
4/24,…} 
Educated guess: {an} -> 0. 

Let  ε = 0.1, 0.01, 0.001, 0.0001, 
0 00001  
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0.00001. 

We need to find an integer N so that
| N/2N – 0 |< ε

Look in the table of values. Note that for 
N = 6 the above is true if ε = 0.1

ε N

1 N>0

0.1 N>5

0.01 N>9

0.001 N>14

0.0001 N>18

0.00001 N>22

Theorem(Convergent sequences are bounded) 
Let {an} be a convergent sequence. Then the 
sequence is bounded, and the limit is unique.

Proof:
(i)Uniqueness: Suppose the sequence has two limits, 

L and K. Let ε > 0. There is an integer NK such that 
| an – K | < ε /2  if n > NK .  
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| an  |  ε /    n  NK .  
Also, there is an integer NL such that | an – L | < ε
/2  if n > NL.

By Triangle Inequality:
| L – K |<| an – L |+| an – K |< ε /2 + ε /2 = ε

if n >max {NK, NL }.
Therefore | L – K | < ε for any ε > 0. But this means 
that L = K.
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Theorem(Convergent sequences are 
bounded)

Proof:
(ii) Boundedness. Since the sequence converges, 
choose any ε > 0.  Specifically take ε = 1. There is 
N  h
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N so that
| an – L | < 1 if n > N.

Fix N. Then
| an | ≤ | an – L | + |L| < 1 + |L| = P for all n > N.

Let M=max{|a1|,|a2|,…|aN|, P}. Thus |an| < M for 
all n, which makes the sequence bounded.

Theorem: If {an}öL, {bn}öM and α is a 
real number, then

1. limnö∞ α = α.

2. limnö∞ (an ± bn ) = L ± M

3. limnö∞ (an × bn ) = L × M 

4. limnö∞ (αan) = αL 
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4. limnö∞ (αan)  αL 

5. If an ≤ bn for all n ≥ m, then L ≤ M

6. If bn ≠ 0 for all n and if M ≠ 0, then 
glb{|bn|}>0.

7. limnö∞ (an /bn ) = L/M , provided M ≠ 0.

Proof:
1. limnö∞ α = α

Since α – α = 0, for any ε > 0, | α – α |< ε and 
we are done.

2. limnö∞ (an ± bn ) = L ± M

Do this for the sum.  The difference is similar.  
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Do this for the sum.  The difference is similar.  
Let  ε > 0, there exist Na and Nb so that

| an – L | < ε/2    if n > Na and

| bn – M | < ε/2   if n > Nb.

Let K = max{Na, Nb}, then if n > K
|(an+bn) – (L+M)|≤ |an – L|+|bn – M| < ε/2 + ε/2 = ε
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3. limnö∞ (an × bn ) = L × M 

Note:

|(anbn) – (LM)|≤ |(an – L) bn +L(bn – M)|

≤ |(an – L) bn |+|L(bn – M)|

= |(an – L)||bn |+|L||(bn – M)|

Then use the fact that {bn} is bounded.
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4. limnö∞ (αan) = αL 

Consider ε/α if α ≠ 0.  If α =0 this is easy.

5. If an ≤ bn for all n ≥ m, then L ≤ M

6. If bn ≠ 0 for all n and if M ≠ 0, then glb{|bn|}>0.

Let ε =|M|/2 > 0. {bn} öM so there is N so that if 
n > N then | bn - M |<|M|/2.

So if n > N we must have | bn | ≥ |M|/2. 

If not by the Triangle Inequality
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If not by the Triangle Inequality

|M| = |M - bn + bn |≤ |M - bn | + | bn | 

< |M|/2+|M|/2=|M|

So set

m = min {|M|/2,| b1 |,| b2 |,…,| bN |}.

Then m > 0 and | bn | ≥ m for all n

7. limnö∞ (an /bn ) = L/M , provided M ≠ 0.

Reduce to limnö∞ (1/bn ) = 1/M – How?

Let ε > 0. By (6) there is m > 0 so that | bn | ≥ 
m. Since {bn} is convergent there is N so that if 
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n > N

|M – bn |< ε m |M|

Then for n > N

| 1/bn – 1/M| = | bn – M|/|bn M| 

≤  | bn – M|/(m|M|) < ε
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Example
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Theorem: If {an}öL, {bn}öL and 

an ≤ cn ≤ bn for all n ≥ m

Then {cn}öL.

The Squeeze Theorem
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Theorem: Let a be fixed. Then

The Power Theorem

0 if | | 1

1 if  1
li n

a

a

ì <ïïïï =ï
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