## MATH 6101 Fall 2008

Functions, Sequences and Limits

## The Topology of the Reals

We will make some simple definitions. Let $a$ and $b$ be any two real numbers with $a<b$.

$$
\begin{aligned}
& (a, b)=\{x \in \mathrm{R} \mid a<x<b\} \\
& {[a, b]=\{x \in \mathrm{R} \mid a \leq x \leq b\}} \\
& (a, b]=\{x \in \mathrm{R} \mid a<x \leq b\} \\
& {[a, b)=\{x \in \mathrm{R} \mid a \leq x<b\}} \\
& (a, \infty)=\{x \in \mathrm{R} \mid a<x\} \\
& {[a, \infty)=\{x \in \mathrm{R} \mid a \leq x\}} \\
& (-\infty, b)=\{x \in \mathrm{R} \mid x<b\} \\
& (-\infty, b]=\{x \in \mathrm{R} \mid x \leq b\}
\end{aligned}
$$

## Topology of the Reals

If $r \in \mathrm{R}$ then neighborhood of $r$ is an open interval $(a, b)$ so that $r \in(a, b)$.

The neighborhood is centered at $r$ if

$$
r=(a+b) / 2
$$

If $\varepsilon$ and $a$ are reals, then the $\varepsilon$-neighborhood of $a$ is the interval $(a-\varepsilon, a+\varepsilon)$

## Functions

Nicole Oresme - 1350 - described the laws of nature as laws giving a dependence of one quantity on another.


## History of Function

Galileo - 1638 - studies of motion contain the clear understanding of a relation between variables


## History of Function

Descartes - an equation in two variables, geometrically represented by a curve, indicates a dependence between variable quantities


## Euclid's Rational Numbers

Newton - showed how functions arise from infinite power series
Leibniz - 1673 - the first to use the term function. He took function to designate, in very general terms, the dependence of geometrical quantities on the shape of a curve.


## History of Function

- Jean Bernoulli - 1718 - function of a variable as a quantity that is composed in some way from that variable and constants
- Euler - 1748 - A function of a variable quantity is an analytic expression composed in any way whatsoever of the variable quantity and numbers or constant quantities.
- Euler - 1755 - If some quantities so depend on other quantities that if the latter are changed the former undergoes change, then the former quantities are called functions of the latter.


## History of Function

- Cauchy - 1821 - still thinking of a function in terms of a formula (either explicit or implicit)
- Fourier - 1822 - introduced general Fourier series but fell back on old definitions
- Dirichlet - 1837 - defined general function and continuity (in modern terms)
- Weierstrauss - 1885 - any continuous function is the limit of a uniformly convergent sequence of polynomials
- Goursat - 1923 - modern definition


## Definitions

Bernoulli - 1718-One calls here a function of a variable a quantity composed in any manner whatever of this variable and constants.

Basically this meant $+,-, \times, \div, \sqrt{ }, \operatorname{logs}$ and sines.

They would say that $f(x)$ depended analytically on the variable $x$.

## Definitions

Fourier - 1822 - In general the function $f(x)$ represents a succession or ordinates each of which is arbitrary. An infinity of values being given to the abscissa $x$, there area an equal number of ordinates $f(x)$. All have actual numerical values, either positive or negative or null. We do not suppose these ordinates to be subject to common law; the succeed each other in any manner whatever, and each of them is given as it were a single quantity.

## Definitions

Fourier removed the requirement of "analytic" from the definition. It was not widely accepted for years.

## Definitions

Dirichlet - 1837 - Let us suppose that $a$ and $b$ are two definite values and $x$ is a variable quantity which is to assume, gradually, all values located between a and $b$. Now, if to each $x$ there corresponds a unique, finite $y$..., then $y$ is called a ... function of $x$ for this interval. It is, moreover, not at all necessary, that $y$ depends on $x$ in this whole interval according to the same law; indeed, it is not necessary to think of only relations that can be expressed by mathematical operations.

## Definitions

Every "Bernoulli" function is a "Fourier" or a "Dirichlet" function.

## Dirichlet:

$$
f(x)=\left\{\begin{array}{lc}
1 & \text { if } x \text { is rational and } 0 \leq x \leq 1 \\
0 & \text { if } x \text { is irrational and } 0 \leq x \leq 1
\end{array}\right.
$$

## Another "Bad Example"

d'Alembert was working on the problem of describing a vibrating string. The initial position for the string is not the graph of any analytical expression.

## A More Modern Definition

Let $D$ be a set of real numbers. A function

$$
f: D \rightarrow \mathrm{R}
$$

is a rule that assigns a number $f(x)$ to every element $x$ of $D$.

## Modern Set Theory Definition

A function $f$ is an ordered triple of sets ( $F, X, Y$ ) with restrictions, where $F$ (the graph) is a set of ordered pairs $(x, y), X$ (the source) contains all the first elements of $F$ and perhaps more, and $Y$ (the target) contains all the second elements of $F$ and perhaps more.

The most common restrictions are that $F$ pairs each $x$ with just one $y$, and that $X$ is just the set of first elements of $F$ and no more.

When no restrictions are placed on $F$, we speak of a relation between $X$ and $Y$ rather than a function. The relation is "singlevalued" when the first restriction holds: $\left(x, y_{1}\right) \in F$ and $\left(x, y_{2}\right) \in F$ together imply $y_{1}=y_{2}$.

Relations that are not single valued are sometimes called multivalued functions. A relation is total when a second restriction holds: if $x \in X$ then $(x, y) \in F$ for some $y$. Thus we can also say that

A function from $X$ to $Y$ is a single-valued, total relation between $X$ and $Y$.

## Sequences

Let $\mathrm{N}=$ the set of natural numbers (it will not matter if it starts with 0 or with 1 ).
A sequence is a function $a: N \rightarrow \mathrm{R}$.

We will normally denote a sequence by its set of outputs $\left\{a_{n}\right\}$, where $a_{n}=a(n)$.

Occasionally you will see $a_{0}, a_{1}, a_{2}, a_{3}, \ldots$ or $\left\{a_{n}\right\}^{\infty}{ }_{n=0}$

## Examples

1) $\{1,2,3,4,5,6, \ldots\}-$ an arithmetic progression $(f(n)=n)$
2) $\{a+b n \mid n=0,1,2,3, \ldots\}$ - a different type of arithmetic progression $-(f(n)=a+b n)$
3) $\left\{a^{0}, a^{1}, a^{2}, a^{3}, a^{4}, \ldots\right\}$ - a geometric progression $\left(f(n)=a^{n}\right)$
4) $\{1,1 / 2,1 / 3,1 / 4,1 / 5, \ldots\}-(f(n)=1 / n)$
5) $f(n)=a_{n}=(-1)^{n}$. Note that the range is $\{-1,1\}$

## Examples

1) $f(n)=a_{n}=\cos (\pi n / 3)$
$a_{1}=\cos (\pi / 3)=\cos 60^{\circ}=1 / 2$
$\left\{a_{n}\right\}=\{1 / 2,-1 / 2,-1,-1 / 2,1 / 2,1,1 / 2,-1 / 2,-1,-1 / 2,1 / 2,1$,
...\}. The function takes on only a finite number of values, but the sequence has an infinite number of elements.
2) $f(n)=a_{n}=n^{1 / n}$, $\left\{1,2^{1 / 2}, 3^{1 / 3}, 4^{1 / 4}, \ldots\right\}=\{1,1.41421,1.44225,1.41421$, 1.37973, 1.34801, 1.32047, 1.29684, 1.27652, $1.25893, \ldots$.
Also $a_{100}=1.04713, a_{10,000}=1.00092$
3) $b_{n}=(1+1 / n)^{n}$
$\left\{2,(3 / 2)^{2},(4 / 3)^{3},(54)^{4}, \ldots\right\}=\{2,2.25,2.37037$, 2.44141, 2.48832, 2.52163, 2.54650, 2.56578, 2.58117, 2.59374,...\}

Also $a_{100}=2.74081$ and $a_{10,000}=2.71815$

## Almost all ...

Definition: It is said that almost all the terms of the sequence $\left\{a_{n}\right\}$ have a certain property provided that there is an index $N$ such that $\left\{a_{n}\right\}$ possesses this property whenever $n \geq N$.

## Convergence

Definition 1: A sequence of real numbers is said to converge to a real number $L$ if for every $\varepsilon>0$ there is an integer $N>0$ such that if
$k>N$ then $\left|a_{k}-L\right|<\varepsilon$.

Definition 2: A sequence of real numbers is said to converge to a real number $L$ if every neighborhood of $L$ contains almost all of the terms of $\left\{a_{n}\right\}$.

The number $L$ is called the limit of the sequence.

## Convergence

## Lemma 1: The sequence $\{1 / n\}$ converges to 0 .

Proof: Let $(a, b)$ be any neighborhood of o. This means that $a<0<b$. Let $N>[1 / b]$, be an integer greater than $1 / b$. Then $1 / N<b$ and for every integer $n>N$, we have that

$$
a<0<1 / n<1 / N<b
$$

and $(a, b)$ contains almost all of the elements of the sequence. Thus, the sequence converges to 0 .

## Convergence

## Lemma 1: The sequence $\{1 / n\}$ converges to 0 .

Proof: You prove this using Definition 1.

## Convergence

Definition: A sequence is convergent if it has a limit. If it is not convergent it is called divergent.

Lemma 2: The sequence $\left\{a_{n}\right\}$ converges to $L$ if and only if every neighborhood of $L$ that is centered at $L$ contains almost all of the terms of the sequence.

Note that this tells us that the two definitions are the same.

## Example

Let $a_{n}=n / 2^{n} .\left\{a_{n}\right\}=\left\{1 / 2,2 / 2^{2}, 3 / 2^{3}\right.$, $\left.4 / 2^{4}, \ldots\right\}$
Educated guess: $\left\{a_{n}\right\}->0$.

Let $\varepsilon=0.1,0.01,0.001,0.0001$, 0.00001.

We need to find an integer $N$ so that

$$
\left|N / 2^{N}-0\right|<\varepsilon
$$

Look in the table of values. Note that for $N=6$ the above is true if $\varepsilon=0.1$

| $\varepsilon$ | N |
| :--- | :--- |
| 1 | $\mathrm{~N}>0$ |
| 0.1 | $\mathrm{~N}>5$ |
| 0.01 | $\mathrm{~N}>9$ |
| 0.001 | $\mathrm{~N}>14$ |
| 0.0001 | $\mathrm{~N}>18$ |
| 0.00001 | $\mathrm{~N}>22$ |

Theorem(Convergent sequences are bounded)
Let $\left\{a_{n}\right\}$ be a convergent sequence. Then the sequence is bounded, and the limit is unique.

## Proof:

(i)Uniqueness: Suppose the sequence has two limits, $L$ and $K$. Let $\varepsilon>0$. There is an integer $N_{K}$ such that $\left|a_{n}-K\right|<\varepsilon / 2$ if $n>N_{K}$.
Also, there is an integer $N_{L}$ such that $\left|a_{n}-L\right|<\varepsilon$ / 2 if $n>N_{L}$.
By Triangle Inequality:

$$
\begin{gathered}
|L-K|<\left|a_{n}-L\right|+\left|a_{n}-K\right|<\varepsilon / 2+\varepsilon / 2=\varepsilon \\
\text { if } n>\max \left\{N_{K}, N_{L}\right\} .
\end{gathered}
$$

Therefore $|L-K|<\varepsilon$ for any $\varepsilon>0$. But this means that $L=K$.

## Theorem(Convergent sequences are bounded)

## Proof:

(ii) Boundedness. Since the sequence converges, choose any $\varepsilon>0$. Specifically take $\varepsilon=1$. There is $N$ so that

$$
\left|a_{n}-L\right|<1 \text { if } n>N .
$$

Fix $N$. Then
$\left|a_{n}\right| \leq\left|a_{n}-L\right|+|L|<1+|L|=P$ for all $n>N$. Let $M=\max \left\{\left|a_{1}\right|,\left|a_{2}\right|, \ldots\left|a_{N}\right|, P\right\}$. Thus $\left|a_{n}\right|<M$ for all $n$, which makes the sequence bounded.

Theorem: If $\left\{a_{n}\right\} \rightarrow L,\left\{b_{n}\right\} \rightarrow M$ and $\alpha$ is a real number, then

1. $\lim _{n \rightarrow \infty} \alpha=\alpha$.
2. $\lim _{n \rightarrow \infty}\left(a_{n} \pm b_{n}\right)=L \pm M$
3. $\lim _{n \rightarrow \infty}\left(a_{n} \times b_{n}\right)=L \times M$
4. $\lim _{n \rightarrow \infty}\left(\alpha a_{n}\right)=\alpha L$
5. If $a_{n} \leq b_{n}$ for all $n \geq m$, then $L \leq M$
6. If $b_{n} \neq 0$ for all $n$ and if $M \neq 0$, then $g l b\left\{\left|b_{n}\right|\right\}>0$.
7. $\lim _{n \rightarrow \infty}\left(a_{n} / b_{n}\right)=L / M$, provided $M \neq 0$.

## Proof:

1. $\lim _{n \rightarrow \infty} \alpha=\alpha$

Since $\alpha-\alpha=0$, for any $\varepsilon>0,|\alpha-\alpha|<\varepsilon$ and we are done.
2. $\lim _{n \rightarrow \infty}\left(a_{n} \pm b_{n}\right)=L \pm M$

Do this for the sum. The difference is similar. Let $\varepsilon>0$, there exist $N_{a}$ and $N_{b}$ so that

$$
\begin{aligned}
& \left|a_{n}-L\right|<\varepsilon / 2 \text { if } n>N_{a} \text { and } \\
& \left|b_{n}-M\right|<\varepsilon / 2 \text { if } n>N_{b} .
\end{aligned}
$$

Let $K=\max \left\{N_{a}, N_{b}\right\}$, then if $n>K$
$\left|\left(a_{n}+b_{n}\right)-(L+M)\right| \leq\left|a_{n}-L\right|+\left|b_{n}-M\right|<\varepsilon / 2+\varepsilon / 2=\varepsilon$
3. $\lim _{n \rightarrow \infty}\left(a_{n} \times b_{n}\right)=L \times M$

Note:

$$
\begin{aligned}
\left|\left(a_{n} b_{n}\right)-(L M)\right| & \leq\left|\left(a_{n}-L\right) b_{n}+\mathrm{L}\left(b_{n}-M\right)\right| \\
& \leq\left|\left(a_{n}-L\right) b_{n}\right|+\left|\mathrm{L}\left(b_{n}-M\right)\right| \\
& =\left|\left(a_{n}-L\right)\right|\left|b_{n}\right|+|\mathrm{L}|\left|\left(b_{n}-M\right)\right|
\end{aligned}
$$

Then use the fact that $\left\{b_{n}\right\}$ is bounded.
4. $\lim _{n \rightarrow \infty}\left(\alpha a_{n}\right)=\alpha L$

Consider $\varepsilon / \alpha$ if $\alpha \neq 0$. If $\alpha=0$ this is easy.
5. If $a_{n} \leq b_{n}$ for all $n \geq m$, then $L \leq M$
6. If $b_{n} \neq \mathrm{o}$ for all $n$ and if $M \neq 0$, then glb $\left\{\left|b_{n}\right|\right\}>0$.

Let $\varepsilon=|M| / 2>0 .\left\{b_{n}\right\} \longrightarrow M$ so there is $N$ so that if $n>N$ then $\left|b_{n}-M\right|<|M| / 2$.
So if $n>N$ we must have $\left|b_{n}\right| \geq|M| / 2$.
If not by the Triangle Inequality

$$
\begin{aligned}
|M| & =\left|M-b_{n}+b_{n}\right| \leq\left|M-b_{n}\right|+\left|b_{n}\right| \\
& <|M| / 2+|M| / 2=|M|
\end{aligned}
$$

So set

$$
m=\min \left\{|M| / 2,\left|b_{1}\right|,\left|b_{2}\right|, \ldots,\left|b_{N}\right|\right\} .
$$

Then $m>0$ and $\left|b_{n}\right| \geq m$ for all $n$
7. $\lim _{n \rightarrow \infty}\left(a_{n} / b_{n}\right)=L / M$, provided $M \neq 0$.

Reduce to $\lim _{n \rightarrow \infty}\left(1 / b_{n}\right)=1 / M-$ How?

Let $\varepsilon>0$. By (6) there is $m>0$ so that $\left|b_{n}\right| \geq$ $m$. Since $\left\{b_{n}\right\}$ is convergent there is $N$ so that if $n>N$

$$
\left|M-b_{n}\right|<\varepsilon m|M|
$$

Then for $n>N$

$$
\begin{aligned}
\left|1 / b_{n}-1 / M\right| & =\left|b_{n}-M\right| /\left|b_{n} M\right| \\
& \leq\left|b_{n}-M\right| /(m|M|)<\varepsilon
\end{aligned}
$$

## Example

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{3 n^{4}+4 n^{3}-7 n^{2}-5280 n+3216547}{7 n^{4}+5588741226 n^{2}-7} \\
& =\lim _{n \rightarrow \infty} \frac{3 \frac{n^{4}}{n^{4}}+4 \frac{n^{3}}{n^{4}}-7 \frac{n^{2}}{n^{4}}-5280 \frac{n}{n^{4}}+3216547 \frac{1}{n^{4}}}{7 \frac{n^{4}}{n^{4}}+5588741226 \frac{n^{2}}{n^{4}}-7 \frac{1}{n^{4}}} \\
& =\lim _{n \rightarrow \infty} \frac{3+\frac{4}{n}-\frac{7}{n^{2}}-\frac{5280}{n^{3}}+\frac{3216547}{n^{4}}}{7+\frac{5588741226}{n^{2}}-\frac{7}{n^{4}}}=\frac{3}{7}
\end{aligned}
$$

## The Squeeze Theorem

Theorem: If $\left\{a_{n}\right\} \longrightarrow L,\left\{b_{n}\right\} \longrightarrow L$ and

$$
a_{n} \leq c_{n} \leq b_{n} \text { for all } n \geq m
$$

Then $\left\{c_{n}\right\} \longrightarrow L$.

## The Power Theorem

Theorem: Let a be fixed. Then

$$
\lim _{n \rightarrow \infty} a^{n}= \begin{cases}0 & \text { if }|a|<1 \\ 1 & \text { if } a=1 \\ d n e & \text { if }|a|>1 \\ d n e & \text { if } a=-1\end{cases}
$$

## Find

## $\lim \frac{3 n^{2}+5 n+1}{n+1}$ <br> $n \rightarrow \infty \quad n+1$

## Find

$$
\lim _{n \rightarrow \infty} \frac{3 n^{2}+5 n+1}{n^{2}+1}
$$

## Find

$$
\lim _{n \rightarrow \infty} \frac{3 n^{2}+5 n+1}{n^{3}+1}
$$

## Find

$$
\lim _{n \rightarrow \infty} \frac{0.5^{n}+3 \sin (n)}{\sqrt{n}}
$$

## Find

$\lim _{n \rightarrow \infty} \frac{2^{n}-1}{3^{n}+1}$

## Find

$$
\lim _{n \rightarrow \infty} \frac{2^{n}+1}{3^{n}-1}
$$

## Find

$$
\lim _{n \rightarrow \infty} \frac{3^{n}+2^{n}}{3^{n}-2^{n}}
$$

## Find

$$
\lim _{n \rightarrow \infty} \frac{3^{n}+4^{n-3}}{5^{n+2}-2^{n+4}}
$$

## Find

$$
\lim _{n \rightarrow \infty} \frac{4^{2 n-3}+2^{5 n+6}}{5^{3 n-2}-3^{n+10}}
$$

## Find

$\lim _{n \rightarrow \infty} n^{n}$

## Find

## $\lim _{n \rightarrow \infty} \frac{1}{n^{n}}$

## Find

$$
\lim _{n \rightarrow \infty}\left(1-\left|\frac{\sin (n)}{n}\right|\right)
$$

## Find

## $\lim _{n \rightarrow \infty} \frac{n}{2^{n}}$

## Find

$$
\lim _{n \rightarrow \infty} \frac{n^{2}}{2^{n}}
$$

## Find

## . $n$ ! <br> $\lim _{n \rightarrow \infty} \frac{n!}{n^{n}}$

## Find

## $\lim _{n \rightarrow \infty} \frac{n!}{2^{n}}$

