MATH 6101 Fall 2008

The Cauchy Property

$+\infty$ and $-\infty$

They are *not* real numbers and do *not* necessarily obey the rules of arithmetic for real numbers.
We often act as if they do.
We need guidelines.

Add $+\infty$ and $-\infty$ to **R** and extend the ordering by $-\infty < a < +\infty$ for every real number $a \in \mathbf{R} \cup \{+\infty, -\infty\}$.

MATH 6101

2

29-Oct-2008

29-Oct-2008

$+\infty$ and $-\infty$

If $a \in \mathbf{R}$ then we define the following 1) $a + \infty = +\infty$ 2) $a - \infty = -\infty$ 3) If a > 0, then $a \times \infty = \infty$ and $a \times -\infty = -\infty$ 4) If a < 0, then $a \times \infty = -\infty$ and $a \times -\infty = +\infty$

We may adopt the following conventions: $a/\infty = 0$ and $a/(-\infty) = 0$

MATH 6101

Limits of Sequences

Limit of $\{a_n\}$ exists IFF we can compute *L*.

Will this always work?

29-Oct-2008

29-Oct-2008

29-Oct-2008

Can we always find the limit?

Do we have to be able to find the limit as a number?

Theorem

MATH 6101

Theorem (last lecture): Every convergent sequence is bounded. Is the converse true?

Is it true that every bounded sequence converges?

Find a proof or a counterexample.

MATH 6101

Definitions

A sequence $\{a_n\}$ is *increasing* if $a_n \le a_{n+1}$ for every *n*.

A sequence $\{a_n\}$ is *decreasing* if $a_n \ge a_{n+1}$ for every *n*.

A sequence is *monotone* (*monotonic*) if it is either increasing or decreasing.

MATH 6101

Monotone Convergence Theorem

<u>Theorem</u>: Every bounded monotonic sequence converges.

Proof:

29-Oct-2008

Let $\{a_n\}$ be a bounded increasing sequence and let $S = \{a_n \mid n \in N\}$. Since the sequence is bounded, $a_n < M$ for some real number M and for all n.

Therefore *S* is bounded and has a least upper bound. Let u = lub S and let $\varepsilon > 0$.

MATH 6101

11

12

Theorem

Proof:

Since u = lub S and $\varepsilon > 0$, $u - \varepsilon$ is **not** an upper bound for S. Thus there is an integer K so that $a_K > u - \varepsilon$. Since $\{a_n\}$ is increasing then for all n > K, $a_n \ge a_N$ and for all n > K

 $u - \varepsilon < a_n \le u$.

Thus, $|a_n - u| < \varepsilon$ for all n > K and $\lim a_n = u =$ lub *S*.

MATH 6101

29-Oct-2008

29-Oct-2008

Consequences

MATH 6101

14

15

2) Let $a_0 = 1$ and $a_{n+1} = 1 + \sqrt{a_n}$. Converges by Monotone Convergence Theorem. To what does it converge? Assume: $\lim_{n\to\infty} a_n = L$ $a_{n+1} = 1 + \sqrt{a_n}$ $\lim_{n\to\infty} a_{n+1} = 1 + \lim_{n\to\infty} \sqrt{a_n}$ $L = 1 + \sqrt{L}$ $(L - 1)^2 = L$ so $L^2 - 3L + 1 = 0$ $L = (3 \pm \sqrt{(9 - 4)})/2 = (3 \pm \sqrt{5})/2$ Which one is it? It cannot be both. Why?

MATH 6101

Theorem

<u>Theorem</u>: Let $\{a_n\}$ be a sequence of real numbers.

- (i) If {*a_n*} is an unbounded monotonically increasing sequence, then lim *a_n* =+∞.
- (ii) If $\{a_n\}$ is an unbounded monotonically decreasing sequence, then $\lim a_n = -\infty$.

Theorem

MATH 6101

16

17

<u>Theorem</u>: Suppose that $\{a_n\}$ is a monotone increasing sequence and $\{b_n\}$ is a monotone decreasing sequence such that

 $a_n \le b_n$ for all n = 0,1,2,...

and

29-Oct-2008

29-Oct-2008

 $\{a_n-b_n\}\to {\rm o}$ Then $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n.$

Theorem

MATH 6101

<u>Theorem</u>: Every sequence contains a monotone subsequence.

Proof: Let $\{a_n\}$ be a sequence. We say that a term a_n is *dominating* if $a_n > a_m$ for all m > n. *Claim*: Every sequence contains an infinite number or a finite number of dominating terms. (Note: finite could be 0.)

MATH 6101

29-Oct-2008

Theorem Proof (continued): (i) Assume $\{a_n\}$ has an infinite number of dominating terms. Call these $a_{n_0}, a_{n_1}, a_{n_2}, \dots$ where $n_0 < n_1 < n_2 < \dots$ By definition $a_{n_0} > a_{n_1} > a_{n_2} > \dots$ which is the monotone subsequence MATH 6101 29-Oct-2008 19

Theorem

Proof (continued):

(ii) Assume $\{a_n\}$ has a finite number of dominating terms. Thus, there is an *m* so that for every n > m, a_n is not dominating. That means that for each n > m there exists a k > n so that $a_n \le a_k$. Let $n_0 = m$. By the above

there is a $n_1 > n_0$ so that $a_{n_0} \le a_{n_1}$. Since $n_1 > n_0$ then there is $n_2 > n_1$ so that $a_{n_1} \le a_{n_2}$. This gives

 $a_{n_0} \le a_{n_1} \le a_{n_2} \le a_{n_3} \le \dots$

which is the required monotone subsequence. MATH 6101

20

21

29-Oct-2008

29-Oct-2008

Bolzano-Weierstrauss Theorem

MATH 6101

Theorem: Every bounded sequence has a convergent subsequence.

The Cauchy Property

Definition 1: A sequence $\{a_n\}$ is said to have the Cauchy property if for every $\varepsilon > 0$ there is an index *K* so that

MATH 6101

22

23

$$\begin{split} | \ a_{n+m} - a_n | < \varepsilon \\ \text{for all } n \ge K \text{ and } m = 1,2,3,... \\ [\text{Note: equivalent statement } - \\ & \{a_{n+m}\}^{\infty}{}_{m=0} \subset (a_n - \varepsilon, \ a_n + \varepsilon) \text{ for all } n \ge K. \] \end{split}$$

29-Oct-2008

29-Oct-2008

29-Oct-2008

The Cauchy Property Definition 2: A sequence $\{a_n\}$ is said to have the Cauchy property if for every $\varepsilon > 0$ there is an index *K* so that if n,m > K then $|a_m - a_n| < \varepsilon$.

Definitions

MATH 6101

Let $\{a_n\}$ be bounded – convergent or not, it does not matter. Limiting behavior of $\{a_n\}$ depends only on the *tails* of the sequence, $\{a_n \mid n > N\}$.

Let $u_N = \text{glb}\{a_n \mid n > N\}$ Let $v_N = \text{lub}\{a_n \mid n > N\}$ FACT: If lim a_n exists, then it lies in $[u_N, v_N]$.

MATH 6101

If $\lim_{n\to\infty} a_n$ exists, then $u_N \le \lim a_n \le v_N$ so $u \le \lim a_n \le v$.

Definitions

u and v are useful whether lim a_n exists or not.

Definition:

 $u = \limsup a_n = \lim(\lim \{a_n \mid n > N\})$

```
and \upsilon = \liminf a_n = \lim(\text{glb} \{a_n \mid n > N\})
```

MATH 6101

29-Oct-2008

29-Oct-2008

lim inf and lim sup

Note: Do not require that $\{a_n\}$ be bounded.

Precautions and Conventions. 1) If $\{a_n\}$ is not bounded above, lub $\{a_n\} = +\infty$ and we define lim sup $a_n = +\infty$ 2) If $\{a_n\}$ is not bounded below, glb $\{a_n\} = -\infty$ and we define lim inf $a_n = -\infty$.

MATH 6101

lim inf and lim sup

Is it true that $\limsup \{a_n\} = \lim \{a_n\}$? Not necessarily, because while it is true that $\limsup \{a_n\} \le \lim \{a_n\}$,

some of the values a_n may be much larger than lim sup a_n .

Note that $\limsup a_n$ is the largest value that *infinitely many* a_n 's can get close to.

29-Oct-2008

29-Oct-2008

29-Oct-2008

MATH 6101

28

29

lim inf and lim sup

Theorem: Let $\{a_n\}$ be a sequence of real numbers.

- (i) If $\lim a_n$ is defined [as a real number, $+\infty$ or $-\infty$, then $\lim a_n = \lim a_n = \limsup a_n$.
- (ii) If $\lim a_n = \lim \sup a_n$, then $\lim a_n$ is defined and $\lim a_n = \lim \inf a_n = \lim \sup a_n$.

Proof

MATH 6101

Let $u_N = \text{glb}\{a_n \mid n > N\}$, $v_N = \text{lub}\{a_n \mid n > N\}$, $u = \lim u_N = \lim \inf a_n$ and $v = \lim v_N = \lim \sup a_n$. (i) Suppose $\lim a_n = +\infty$. Let M > 0. There is $N \in \mathbb{N}$ so that if n > N then $a_n > M$. Then $u_N = \text{glb}\{a_n \mid n > N\} \ge M$. So if m > N then $u_m \ge M$. Therefore $\lim u_N = \lim \inf a_n = +\infty$. Likewise, $\limsup a_n = +\infty$. Do the case that $\lim a_n = -\infty$ similarly.

MATH 6101

Proof

Suppose that $\lim a_n = L \in \mathbb{R}$. Let $\varepsilon > 0$. There is $N \in \mathbb{N}$ so that $|a_n - L| < \varepsilon$ for n > N. $a_n < L + \varepsilon$ for n > N. Thus $v_N = lub\{a_n \mid n > N\} \le L + \varepsilon$. If m > N then $v_m \le L + \varepsilon$ for all $\varepsilon > 0$. Thus lim sup $a_n \le L = \lim a_n$. Similarly, show that $\lim a_n \le \liminf a_n$. Since lim inf $a_n \le \limsup a_n$, we have $\lim \inf a_n = \lim a_n = \limsup a_n$.

MATH 6101

91

32

33

29-Oct-2008

29-Oct-2008

Proof

(ii) If $\liminf a_n = \limsup a_n = \pm \infty$ easy to show that $\lim a_n = \pm \infty$. Suppose that $\liminf a_n = \limsup a_n = L$. We need to show that $\lim a_n = L$. Let $\varepsilon > 0$. Since $L = \lim v_N$ there is an $N_0 \in \mathbb{N}$ so that $|L - \operatorname{lub}\{a_n \mid n > N_0\}| < \varepsilon$. Thus, $\operatorname{lub}\{a_n \mid n > N_0\} < L + \varepsilon$ and $a_n < L + \varepsilon$ for all $n > N_0$.

Proof

MATH 6101

$$\begin{split} \text{Similarly, since } L &= \lim \, u_N \text{ there is } N_1 \in \mathbf{N} \text{ so that} \\ & |L - \text{glb}\{a_n \mid n > N_1\}| < \varepsilon. \\ \text{Thus, glb}\{a_n \mid n > N_1\} > L - \varepsilon \text{ and} \\ & a_n > L - \varepsilon \text{ for all } n > N_1. \\ \text{These imply } L - \varepsilon < a_n < L + \varepsilon \text{ for} \\ n > \max\{N_o, N_1\}. \\ \text{Equivalently, } |a_n - L| < \varepsilon \text{ for } n > \max\{N_o, N_1\} \\ \text{This proves that } \lim \, a_n = L. \end{split}$$

lim inf and lim sup

This tells us that if $\{a_n\}$ converges, then $\liminf a_n = \limsup a_n$, so for large *N* the numbers lub $\{a_n \mid n > N\}$ and $glb\{a_n \mid n > N\}$ must be close together. This means that all of the numbers in the set $\{a_n \mid n > N\}$ must be close together.

29-Oct-2008

Theorems

MATH 6101

Lemma:

Convergent sequences have the Cauchy property.

Proof:

Suppose that $\lim a_n = L$. $|a_n - a_m| = |a_n - L + L - a_m| \le |a_n - L| + |a_m - L|$ Let $\varepsilon > 0$, there is an integer *N* so that if k > N, $|a_k - L| < \varepsilon/2$. If m, n > N then $\mid a_n-a_m\mid \leq \mid a_n-L\mid +\mid a_m-L\mid \ <\epsilon/2\ +\epsilon/2=\epsilon.$ Thus, $\{a_n\}$ has the Cauchy property.

29-Oct-2008

MATH 6101

Theorem

Theorem:

A sequence is a convergent sequence if and only if it has the Cauchy property.

Proof: The previous lemma proves half of this. Show: any sequence with the Cauchy property must converge. Let $\{a_n\}$ have the Cauchy property. We know it is bounded by the previous lemma. Show: $\lim \inf a_n = \lim \sup a_n$.

MATH 6101

29-Oct-2008

34

Proof

Let $\varepsilon > 0$. Since $\{a_n\}$ has the Cauchy property, there is an $N \in \mathbb{N}$ so that if m, n > N then $|a_n - a_m| < \varepsilon$. In particular, $a_n < a_m + \varepsilon$ for all m, n > N. This shows that $a_m + \varepsilon$ is an upper bound for $\{a_n \mid n > N\}$. Thus $v_N = \text{lub}\{a_n \mid n > N\} \le a_m + \varepsilon$ for m > N. This shows that $v_N - \varepsilon$ is a lower bound for $\{a_m \mid m > N\}$, so $v_N - \varepsilon \le \text{glb}\{a_m \mid m > N\} = u_N$.

MATH 6101

29-Oct-2008

37

