
10/29/2008

1

MATH 6101
Fall 2008

The Cauchy Property

+∞ and –∞ 
1) They are not real numbers and do not

necessarily obey the rules of arithmetic for real 
numbers.  

2)We  often act as if they do.
3)We need guidelines.
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Add +∞ and –∞ to R and extend the ordering by
–∞ < a <+∞ 

for every real number a є R U {+ ∞, –∞}.

+∞ and –∞ 
If a є R then we define the following
1) a + ∞ = +∞  
2) a – ∞ = –∞
3) If a > 0, then a × ∞ = ∞ and a × –∞ = –∞
4) If a < 0, then a × ∞ = – ∞ and a × – ∞ = +∞
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We may adopt the following conventions:
a/∞ = 0 and a/(–∞) = 0
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Limits of Sequences

Limit of {an} exists IFF we can compute L.

Will this always work?

Can we always find the limit?

Do we have to be able to find the limit as a 
number?
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Theorem
Theorem (last lecture): Every convergent 
sequence is bounded.

Is the converse true?
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Is it true that every bounded sequence 
converges?

Find a proof or a counterexample.

Definitions
A sequence {an} is increasing if an ≤ an+1 for 
every n.

A sequence {an} is decreasing if an ≥ an+1 for 
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every n.

A sequence is monotone (monotonic) if it is 
either increasing or decreasing.
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Examples
1) Find an example of an increasing sequence.

2) Find an example of a decreasing sequence.
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3) Find an example of a sequence that is not 
monotonic.

Increasing Sequences
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Decreasing Sequences
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Non-monotonic Sequences
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Monotone Convergence Theorem

Theorem: Every bounded monotonic 
sequence converges.

Proof: 

Let {an} be a bounded increasing sequence and 
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n

let S= {an | n є N}. Since the sequence is 
bounded, an  < M for some real number M and 
for all n.  

Therefore S is bounded and has a least upper 
bound. Let u =lub S and let ε > 0. 

Theorem
Proof: 

Since u=lub S and ε > 0, u – ε is not an upper 
bound for S. Thus there is an integer K so that 
aK > u – ε. Since {an} is increasing then for all  

  K  d f  ll   K
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n > K, an ≥ aN and for all n > K

u – ε < an ≤ u. 

Thus, | an – u| < ε for all n > K and lim an  = u = 
lub S.
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Consequences
1) The decimal representation of a real 

number converges.

31 2
1 2 3 4 2 3

. ... 1
10 10 10

dd d
m m d d d d m m< = + + + + ≤ +

L   d d d d d   Th    
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Let an = m.d1d2d3d4…dn.  Then an ≤ an+1 so 
{an} is increasing.

2) Let a0 = 1 and an+1 = 1/(1+ an)

Consequences
2) Let a0 = 1 and an+1 = 1+ √an. 

Does it converge? Is it monotone? 

a0 = 1 a1 = 1+ √a0) = 2

a2 = 1+ √a1) = 1+ √2 ≈ 2.4142…
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a3 = 1+ √a2 = 1 + √2.4142… ≈ 2.55377…

Prove it is increasing by induction on n.

Consequences
2) Let a0 = 1 and an+1 = 1+ √an. 

Converges by Monotone Convergence 
Theorem.  To what does it converge? 
Assume: limnØ∞ an = L
an+1 = 1+ √an
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limnØ∞ an+1 =1+ limnØ∞ √ an

L = 1+ √(limnØ∞ an)
L = 1 + √L
(L – 1)2 = L so L2 – 3L + 1 = 0
L = (3 ≤ √(9 – 4))/2 = (3 ≤ √5)/2 
Which one is it? It cannot be both. Why?



10/29/2008

6

Theorem
Theorem: Let {an} be a sequence of real 
numbers.

(i) If {an} is an unbounded monotonically 
increasing sequence, then lim an =+∞.

(ii) If { } i   b d d t i ll  
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(ii) If {an} is an unbounded monotonically 
decreasing sequence, then lim an = – ∞.

Theorem
Theorem: Suppose that {an} is a monotone 
increasing sequence and {bn} is a monotone 
decreasing sequence such that

an ≤ bn for all n = 0,1,2,…

d
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and

{an – bn} Ø 0

Then limnØ∞ an = limnØ∞ bn.

Theorem
Theorem: Every sequence contains a 
monotone subsequence.

Proof: Let {an} be a sequence.  We say that a 
t  i  d i ti if  f  ll  
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term an is dominating if an > am for all m > n.

Claim: Every sequence contains an infinite 
number or a finite number of dominating 
terms. (Note: finite could be 0.)
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Theorem
Proof (continued): 

(i) Assume  {an} has an infinite number of 
dominating terms. Call these an0

,an1
,an2

,… 
where n0 < n1 < n2 < …. By definition
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an0
> an1

> an2
> …

which is the monotone subsequence 

Theorem
Proof (continued): 

(ii) Assume  {an} has a finite number of 
dominating terms. Thus, there is an m so 
that for every n > m, an is not dominating.

Th t  th t f  h  th  i t   
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That means that for each n > m there exists a 

k > n so that an ≤ ak.  Let n0 = m. By the above 
there is a n1 > n0 so that an0

≤ an1
.  Since n1 > n0

then there is n2 > n1 so that an1
≤ an2

.  This gives

an0
≤ an1

≤ an2
≤ an3

≤ …

which is the required monotone subsequence.

Bolzano-Weierstrauss Theorem
Theorem: Every bounded sequence has a 

convergent subsequence.
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The Cauchy Property
Definition 1:  A sequence {an} is said to have 
the Cauchy property if for every ε > 0 there is 
an index K so that

| an+m – an| < ε

f  ll   K d  
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for all n ≥ K and m = 1,2,3,…

[Note: equivalent statement –

{an+m}∞m=0 Õ (an – ε, an + ε) for all n ≥ K. ]

The Cauchy Property
Definition 2:  A sequence {an} is said to have 
the Cauchy property if for every ε > 0 there is 
an index K so that if n,m > K then 

| am – an| < ε.
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Definitions
Let {an} be bounded – convergent or not, it 
does not matter.

Limiting behavior of {an} depends  only on the 
tails of the sequence, {an | n > N}. 
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Let uN = glb{an | n > N}

Let vN = lub{an | n > N}

FACT: If lim an exists, then it lies in [uN, vN]. 
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Definitions
As N increases, the sets {an | n > N}  get 
smaller. Thus,

u1 ≤ u2 ≤ u3 ≤ … and v1 ≥ v2 ≥ v3 ≥ …

Let
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u = limNØ∞ uN and v = limnØ∞ vN

Both exist – Why? 

Claim: u ≤ v

Definitions
If limnØ∞ an exists, then  uN ≤ lim an ≤ vN

so  u ≤ lim an ≤ v. 

u and v are useful whether lim an exists or not.
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Definition:

u = lim sup an = lim(lub {an | n > N})

and

v = lim inf an = lim(glb {an | n > N}) 

lim inf and lim sup
Note: Do not require that {an} be bounded. 

Precautions and Conventions. 

1) If {an} is not bounded above, lub {an } =  +∞ 

29-Oct-2008 MATH 6101 27

and we define lim sup an = + ∞

2) If {an} is not bounded below, glb {an } = –∞

and we define lim inf an = –∞.
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lim inf and lim sup
Is it true that lim sup {an} =lub {an}? 

Not necessarily, because while it is true that 

lim sup {an} ≤ lub {an}, 

some of the values an may be much larger than 
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lim sup an.  

Note that lim sup an is the largest value that 
infinitely many an ’s can get close to.

lim inf and lim sup
Theorem: Let {an} be a sequence of real 
numbers.

(i) If lim an is defined [as a real number, +∞ or 
–∞, then lim inf an =lim an = lim sup an .

(ii) If li  i f li    th  li  i  
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(ii) If lim inf an =lim sup an, then lim an is 
defined and lim an  =lim inf an =lim sup an.

Proof

Let uN = glb{an | n > N}, vN = lub{an | n > N}, 
u = lim uN = lim inf an and 
v = lim vN = lim sup an.

(i) Suppose lim an =+∞. Let M > 0. There is 
N є N so that if n > N then a >M  Then 
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N є N so that if n > N then an >M. Then 
uN =glb {an | n > N} ≥ M. 

So if m > N then um ≥ M. 
Therefore lim uN = lim inf an = +∞. Likewise, 
lim sup an = +∞. 
Do the case that lim an = –∞  similarly.
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Proof

Suppose that lim an = L є R. Let ε > 0. There is 
N є N so that | an  – L| < ε for n > N. 
an < L + ε for n > N. 
Thus v = lub{a | n > N} ≤ L + ε
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Thus vN = lub{an | n > N} ≤ L + ε .
If m > N then vm ≤ L + ε for all ε > 0. 
Thus lim sup an ≤ L =lim an. 
Similarly, show that lim an ≤ lim inf an . 
Since lim inf an ≤ lim sup an , we have 

lim inf an = lim an  = lim sup an. 

Proof

(ii) If lim inf an  = lim sup an = ±∞ easy to show 
that 
lim an = ±∞. 
Suppose that lim inf an  = lim sup an = L. We need 
to show that 
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to show that 
lim an = L. 
Let ε > 0. Since L = lim vN there is an N0 є N so 
that 

|L - lub{an   | n > N0}| < ε.  
Thus, lub{an   | n > N0}< L + ε and 

an < L + ε for all  n > N0. 

Proof

Similarly, since L = lim uN there is N1 є N so 
that 

|L – glb{an   | n > N1}| < ε. 

Thus, glb{an   | n > N1} > L – ε and
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an > L – ε for all n > N1. 

These imply L – ε < an < L + ε for 

n > max{N0, N1}.

Equivalently, | an – L| < ε for n > max{N0, N1}

This proves that lim an  = L.
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lim inf and lim sup
This tells us that if {an} converges, then 

lim inf an = lim sup an, 

so for large N the numbers lub {an | n > N} and 
glb{an | n > N} must be close together. This 

 th t ll f th  b  i  th  t 
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means that all of the numbers in the set 

{an | n > N} must be close together. 

Theorems
Lemma:

Convergent sequences have the Cauchy property.

Proof:

Suppose that lim a  = L  
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Suppose that lim an  L. 

| an  – am |=| an  – L + L – am | ≤ | an  – L |+| am  – L |

Let ε > 0, there is an integer N so that if k > N, 

| ak – L | < ε/2.   If m,n > N then 

| an  – am | ≤ | an  – L |+| am  – L |  < ε/2  + ε/2 = ε.

Thus, {an } has the Cauchy property.

Theorem
Theorem:

A sequence is a convergent sequence if and 
only if it has the Cauchy property.

Proof: The previous lemma proves half of this.
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oo : p o p o o

Show: any sequence with the Cauchy property 
must converge.  Let {an}  have the Cauchy 
property. We know it is bounded by the 
previous lemma.

Show: lim inf an = lim sup an.
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Proof

Let ε > 0. Since {an}  has the Cauchy property, 
there is an N є N so that if m,n > N then 

| an  - am| < ε. In particular, an  < am + ε for all 
m,n > N. This shows that am + ε is an upper 
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bound for {an | n > N}. Thus 

vN =lub{an | n > N} ≤ am + ε for m > N.  

This shows that vN – ε is a lower bound for 

{am | m > N}, so vN – ε ≤ glb{am | m > N} = uN. 

Proof
Therefore

lim sup an ≤ vN ≤ uN + ε ≤ lim inf an + ε

Since this holds for all ε > 0, we have that 

lim sup an ≤ lim inf an
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This is enough to give us that the two 
quantities are equal.

Problems
Compute the limit if it exists:

a0 = 1 and 

1

29-Oct-2008 MATH 6101 39

1
1

n n
n

a a
a+ = +
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Problems
Compute the limit if it exists:

a0 = 1 and 

1
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1
13n
n

a
a+ = −

Problems
Compute the limit if it exists:

a0 = 0 and 

1a +
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1
1
2

n
n

n

aa
a+

+
=

+

Problems
Compute the limit if it exists:

a0 = 1 and 

1a +
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1
1
2

n
n

n

aa
a+

+
=

+



10/29/2008

15

Problems
Compute the limit if it exists:

a0 = 0 and 

1
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2
1

1
4n na a+ = +


