MATH 6101 Fall 2008

The Cauchy Property

$+\infty$ and $-\infty$

1) They are not real numbers and do not necessarily obey the rules of arithmetic for real numbers.
2) We often act as if they do.
3)We need guidelines.

Add $+\infty$ and $-\infty$ to \mathbf{R} and extend the ordering by

$$
-\infty<a<+\infty
$$

for every real number $a \in \mathbf{R} \cup\{+\infty,-\infty\}$.

$+\infty$ and $-\infty$

If $a \in \mathbf{R}$ then we define the following

1) $a+\infty=+\infty$
2) $a-\infty=-\infty$
3) If $a>0$, then $a \times \infty=\infty$ and $a \times-\infty=-\infty$
4) If $a<0$, then $a \times \infty=-\infty$ and $a \times-\infty=+\infty$

We may adopt the following conventions:

$$
a / \infty=0 \text { and } a /(-\infty)=0
$$

Limits of Sequences

Limit of $\left\{a_{n}\right\}$ exists IFF we can compute L.

Will this always work?

Can we always find the limit?

Do we have to be able to find the limit as a number?

Theorem

Theorem (last lecture): Every convergent sequence is bounded.
Is the converse true?

Is it true that every bounded sequence converges?

Find a proof or a counterexample.

Definitions

A sequence $\left\{a_{n}\right\}$ is increasing if $a_{n} \leq a_{n+1}$ for every n.

A sequence $\left\{a_{n}\right\}$ is decreasing if $a_{n} \geq a_{n+1}$ for every n.

A sequence is monotone (monotonic) if it is either increasing or decreasing.

Examples

1) Find an example of an increasing sequence.
2) Find an example of a decreasing sequence.
3) Find an example of a sequence that is not monotonic.

Increasing Sequences

Decreasing Sequences

Non-monotonic Sequences

Monotone Convergence Theorem

Theorem: Every bounded monotonic sequence converges.

Proof:

Let $\left\{a_{n}\right\}$ be a bounded increasing sequence and let $S=\left\{a_{n} \mid n \in N\right\}$. Since the sequence is bounded, $a_{n}<M$ for some real number M and for all n.
Therefore S is bounded and has a least upper bound. Let $u=\operatorname{lub} S$ and let $\varepsilon>0$.

Theorem

Proof:

Since $u=\operatorname{lub} S$ and $\varepsilon>0, u-\varepsilon$ is not an upper bound for S. Thus there is an integer K so that $a_{K}>u-\varepsilon$. Since $\left\{a_{n}\right\}$ is increasing then for all $n>K, a_{n} \geq a_{N}$ and for all $n>K$

$$
u-\varepsilon<a_{n} \leq u .
$$

Thus, $\left|a_{n}-u\right|<\varepsilon$ for all $n>K$ and $\lim a_{n}=u=$ lub S.

Consequences

1) The decimal representation of a real number converges.
$m<m . d_{1} d_{2} d_{3} d_{4} \ldots=m+\frac{d_{1}}{10}+\frac{d_{2}}{10^{2}}+\frac{d_{3}}{10^{3}}+\cdots \leq m+1$
Let $a_{n}=m . d_{1} d_{2} d_{3} d_{4} \ldots d_{n}$. Then $a_{n} \leq a_{n+1}$ so $\left\{a_{n}\right\}$ is increasing.
2) Let $a_{o}=1$ and $a_{n+1}=1 /\left(1+a_{n}\right)$

Consequences

2) Let $a_{0}=1$ and $a_{n+1}=1+\sqrt{ } a_{n}$.

Does it converge? Is it monotone?

$$
\begin{aligned}
& \left.a_{0}=1 \quad a_{1}=1+\sqrt{ } a_{0}\right)=2 \\
& \left.a_{2}=1+\sqrt{ } a_{1}\right)=1+\sqrt{ } 2 \approx 2.4142 \ldots \\
& a_{3}=1+\sqrt{ } a_{2}=1+\sqrt{ } 2.4142 \ldots \approx 2.55377 \ldots
\end{aligned}
$$

Prove it is increasing by induction on n.

Consequences

2) Let $a_{0}=1$ and $a_{n+1}=1+\sqrt{ } a_{n}$.

Converges by Monotone Convergence Theorem. To what does it converge?
Assume: $\lim _{n \rightarrow \infty} a_{n}=L$
$a_{n+1}=1+\sqrt{ } a_{n}$
$\lim _{n \rightarrow \infty} a_{n+1}=1+\lim _{n \rightarrow \infty} \sqrt{ } a_{n}$
$L=1+\sqrt{ }\left(\lim _{n \rightarrow \infty} a_{n}\right)$
$L=1+\sqrt{ } L$
$(L-1)^{2}=L$ so $L^{2}-3 L+1=0$
$L=(3 \pm \sqrt{ }(9-4)) / 2=(3 \pm \sqrt{ } 5) / 2$
Which one is it? It cannot be both. Why?

Theorem

Theorem: Let $\left\{a_{n}\right\}$ be a sequence of real

 numbers.(i) If $\left\{a_{n}\right\}$ is an unbounded monotonically increasing sequence, then $\lim a_{n}=+\infty$.
(ii) If $\left\{a_{n}\right\}$ is an unbounded monotonically decreasing sequence, then $\lim a_{n}=-\infty$.

Theorem

Theorem: Suppose that $\left\{a_{n}\right\}$ is a monotone increasing sequence and $\left\{b_{n}\right\}$ is a monotone decreasing sequence such that

$$
a_{n} \leq b_{n} \text { for all } \mathrm{n}=0,1,2, \ldots
$$

and

$$
\left\{a_{n}-b_{n}\right\} \rightarrow 0
$$

Then $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}$.

Theorem

Theorem: Every sequence contains a monotone subsequence.

Proof: Let $\left\{a_{n}\right\}$ be a sequence. We say that a term a_{n} is dominating if $a_{n}>a_{m}$ for all $m>n$.
Claim: Every sequence contains an infinite number or a finite number of dominating terms. (Note: finite could be o.)

Theorem

Proof (continued):

(i) Assume $\left\{a_{n}\right\}$ has an infinite number of dominating terms. Call these $a_{n_{0}}, a_{n_{1}}, a_{n_{2}}, \ldots$ where $n_{0}<n_{1}<n_{2}<\ldots$. By definition

$$
a_{n_{0}}>a_{n_{1}}>a_{n_{2}}>\ldots
$$

which is the monotone subsequence

Theorem

Proof (continued):
(ii) Assume $\left\{a_{n}\right\}$ has a finite number of dominating terms. Thus, there is an m so that for every $n>m, a_{n}$ is not dominating.
That means that for each $n>m$ there exists a $k>n$ so that $a_{n} \leq a_{k}$. Let $n_{0}=m$. By the above there is a $n_{1}>n_{0}$ so that $a_{n_{0}} \leq a_{n_{1}}$. Since $n_{1}>n_{0}$ then there is $n_{2}>n_{1}$ so that $a_{n_{1}} \leq a_{n_{2}}$. This gives

$$
a_{n_{0}} \leq a_{n_{1}} \leq a_{n_{2}} \leq a_{n_{3}} \leq \ldots
$$

which is the required monotone subsequence.

Bolzano-Weierstrauss Theorem

Theorem: Every bounded sequence has a convergent subsequence.

The Cauchy Property

Definition 1: A sequence $\left\{a_{n}\right\}$ is said to have the Cauchy property if for every $\varepsilon>0$ there is an index K so that

$$
\left|a_{n+m}-a_{n}\right|<\varepsilon
$$

for all $n \geq K$ and $m=1,2,3, \ldots$
[Note: equivalent statement -

$$
\left.\left\{a_{n+m}\right\}^{\infty}{ }_{m=0} \subset\left(a_{n}-\varepsilon, a_{n}+\varepsilon\right) \text { for all } n \geq K .\right]
$$

The Cauchy Property

Definition 2: A sequence $\left\{a_{n}\right\}$ is said to have the Cauchy property if for every $\varepsilon>0$ there is an index K so that if $n, m>K$ then

$$
\left|a_{m}-a_{n}\right|<\varepsilon .
$$

Definitions

Let $\left\{a_{n}\right\}$ be bounded - convergent or not, it does not matter.
Limiting behavior of $\left\{a_{n}\right\}$ depends only on the tails of the sequence, $\left\{a_{n} \mid n>N\right\}$.

$$
\begin{aligned}
& \text { Let } u_{N}=\operatorname{glb}\left\{a_{n} \mid n>N\right\} \\
& \text { Let } v_{N}=\operatorname{lub}\left\{a_{n} \mid n>N\right\}
\end{aligned}
$$

FACT: If lim a_{n} exists, then it lies in $\left[u_{N}, v_{N}\right]$.

Definitions

As N increases, the sets $\left\{a_{n} \mid n>N\right\}$ get smaller. Thus,

$$
u_{1} \leq u_{2} \leq u_{3} \leq \ldots \text { and } v_{1} \geq v_{2} \geq v_{3} \geq \ldots
$$

Let
$u=\lim _{N \rightarrow \infty} u_{N}$ and $v=\lim _{n \rightarrow \infty} v_{N}$

Both exist - Why?

Claim: $u \leq v$

Definitions

If $\lim _{n \rightarrow \infty} a_{n}$ exists, then $u_{N} \leq \lim a_{n} \leq v_{N}$
so $u \leq \lim a_{n} \leq v$.
u and v are useful whether $\lim a_{n}$ exists or not.

Definition:

$$
u=\lim \sup a_{n}=\lim \left(\operatorname{lub}\left\{a_{n} \mid n>N\right\}\right)
$$

and

$$
v=\liminf a_{n}=\lim \left(\operatorname{glb}\left\{a_{n} \mid n>N\right\}\right)
$$

lim inf and lim sup

Note: Do not require that $\left\{a_{n}\right\}$ be bounded.

Precautions and Conventions.

1) If $\left\{a_{n}\right\}$ is not bounded above, lub $\left\{a_{n}\right\}=+\infty$ and we define lim sup $a_{n}=+\infty$
2) If $\left\{a_{n}\right\}$ is not bounded below, glb $\left\{a_{n}\right\}=-\infty$ and we define $\lim \inf a_{n}=-\infty$.

lim inf and lim sup

Is it true that $\lim \sup \left\{a_{n}\right\}=\operatorname{lub}\left\{a_{n}\right\}$?
Not necessarily, because while it is true that

$$
\lim \sup \left\{a_{n}\right\} \leq \operatorname{lub}\left\{a_{n}\right\},
$$

some of the values a_{n} may be much larger than $\lim \sup a_{n}$.

Note that $\lim \sup a_{n}$ is the largest value that infinitely many a_{n} 's can get close to.

lim inf and lim sup

Theorem: Let $\left\{a_{n}\right\}$ be a sequence of real numbers.
(i) If $\lim a_{n}$ is defined [as a real number, $+\infty$ or $-\infty$, then $\lim \inf a_{n}=\lim a_{n}=\lim \sup a_{n}$.
(ii) If $\lim \inf a_{n}=\lim \sup a_{n}$, then $\lim a_{n}$ is defined and $\lim a_{n}=\lim \inf a_{n}=\lim \sup a_{n}$.

Proof

$$
\text { Let } \begin{aligned}
u_{N}= & \operatorname{glb}\left\{a_{n} \mid n>N\right\}, v_{N}=\operatorname{lub}\left\{a_{n} \mid n>N\right\}, \\
& u=\lim u_{N}=\lim \inf a_{n} \text { and } \\
& v=\lim v_{N}=\lim \sup a_{n} .
\end{aligned}
$$

(i) Suppose $\lim a_{n}=+\infty$. Let $M>0$. There is
$N \in \mathbf{N}$ so that if $n>N$ then $a_{n}>M$. Then

$$
u_{N}=\operatorname{glb}\left\{a_{n} \mid n>N\right\} \geq M .
$$

So if $m>N$ then $u_{m} \geq M$.
Therefore $\lim u_{N}=\lim \inf a_{n}=+\infty$. Likewise,
$\lim \sup a_{n}=+\infty$.
Do the case that $\lim a_{n}=-\infty$ similarly.

Proof

Suppose that $\lim a_{n}=L \in \mathbf{R}$. Let $\varepsilon>0$. There is $N \in \mathbf{N}$ so that $\left|a_{n}-L\right|<\varepsilon$ for $n>N$.
$a_{n}<L+\varepsilon$ for $n>N$.
Thus $v_{N}=\operatorname{lub}\left\{a_{n} \mid n>N\right\} \leq L+\varepsilon$.
If $m>N$ then $v_{m} \leq L+\varepsilon$ for all $\varepsilon>0$.
Thus $\lim \sup a_{n} \leq L=\lim a_{n}$.
Similarly, show that $\lim a_{n} \leq \lim \inf a_{n}$.
Since $\lim \inf a_{n} \leq \lim \sup a_{n}$, we have $\lim \inf a_{n}=\lim a_{n}=\lim \sup a_{n}$.

Proof

(ii) If $\lim \inf a_{n}=\lim \sup a_{n}= \pm \infty$ easy to show that
$\lim a_{n}= \pm \infty$.
Suppose that $\lim \inf a_{n}=\lim \sup a_{n}=L$. We need to show that
$\lim a_{n}=L$.
Let $\varepsilon>0$. Since $L=\lim v_{N}$ there is an $N_{0} \in \mathbf{N}$ so that

$$
\left|L-\operatorname{lub}\left\{a_{n} \mid n>N_{o}\right\}\right|<\varepsilon .
$$

Thus, $\operatorname{lub}\left\{a_{n} \mid n>N_{0}\right\}<L+\varepsilon$ and

$$
a_{n}<L+\varepsilon \text { for all } n>N_{0}
$$

Proof

Similarly, since $L=\lim u_{N}$ there is $N_{1} \in \mathbf{N}$ so that

$$
\left|L-\operatorname{glb}\left\{a_{n} \mid n>N_{1}\right\}\right|<\varepsilon .
$$

Thus, glb $\left\{a_{n} \mid n>N_{1}\right\}>L-\varepsilon$ and

$$
a_{n}>L-\varepsilon \text { for all } n>N_{1} \text {. }
$$

These imply $L-\varepsilon<a_{n}<L+\varepsilon$ for $n>\max \left\{N_{0}, N_{1}\right\}$.
Equivalently, $\left|a_{n}-L\right|<\varepsilon$ for $n>\max \left\{N_{0}, N_{1}\right\}$ This proves that $\lim a_{n}=L$.

lim inf and lim sup

This tells us that if $\left\{a_{n}\right\}$ converges, then $\lim \inf a_{n}=\lim \sup a_{n}$,
so for large N the numbers lub $\left\{a_{n} \mid n>N\right\}$ and $\operatorname{glb}\left\{a_{n} \mid n>N\right\}$ must be close together. This means that all of the numbers in the set $\left\{a_{n} \mid n>N\right\}$ must be close together.

Theorems

Lemma:

Convergent sequences have the Cauchy property.

Proof:

Suppose that $\lim a_{n}=L$.

$$
\left|a_{n}-a_{m}\right|=\left|a_{n}-L+L-a_{m}\right| \leq\left|a_{n}-L\right|+\left|a_{m}-L\right|
$$

Let $\varepsilon>0$, there is an integer N so that if $k>N$, $\left|a_{k}-L\right|<\varepsilon / 2$. If $m, n>N$ then

$$
\left|a_{n}-a_{m}\right| \leq\left|a_{n}-L\right|+\left|a_{m}-L\right|<\varepsilon / 2+\varepsilon / 2=\varepsilon .
$$

Thus, $\left\{a_{n}\right\}$ has the Cauchy property.

Theorem

Theorem:

A sequence is a convergent sequence if and only if it has the Cauchy property.

Proof: The previous lemma proves half of this. Show: any sequence with the Cauchy property must converge. Let $\left\{a_{n}\right\}$ have the Cauchy property. We know it is bounded by the previous lemma.
Show: $\lim \inf a_{n}=\lim \sup a_{n}$.

Proof

Let $\varepsilon>0$. Since $\left\{a_{n}\right\}$ has the Cauchy property, there is an $N \in \mathbf{N}$ so that if $m, n>N$ then
$\left|a_{n}-a_{m}\right|<\varepsilon$. In particular, $a_{n}<a_{m}+\varepsilon$ for all $m, n>N$. This shows that $a_{m}+\varepsilon$ is an upper bound for $\left\{a_{n} \mid n>N\right\}$. Thus
$v_{N}=\operatorname{lub}\left\{a_{n} \mid n>N\right\} \leq a_{m}+\varepsilon$ for $m>N$.
This shows that $v_{N}-\varepsilon$ is a lower bound for $\left\{a_{m} \mid m>N\right\}$, so $v_{N}-\varepsilon \leq \operatorname{glb}\left\{a_{m} \mid m>N\right\}=u_{N}$.

Proof

Therefore

$\lim \sup a_{n} \leq v_{N} \leq u_{N}+\varepsilon \leq \lim \inf a_{n}+\varepsilon$ Since this holds for all $\varepsilon>0$, we have that
$\lim \sup a_{n} \leq \lim \inf a_{n}$
This is enough to give us that the two quantities are equal.

Problems

Compute the limit if it exists:

$$
\begin{gathered}
a_{\mathrm{o}}=1 \text { and } \\
a_{n+1}=\sqrt{a_{n}+\frac{1}{a_{n}}}
\end{gathered}
$$

Problems

Compute the limit if it exists:

$$
\begin{gathered}
a_{0}=1 \text { and } \\
a_{n+1}=3-\frac{1}{a_{n}}
\end{gathered}
$$

Problems

Compute the limit if it exists:

$$
\begin{gathered}
a_{\mathrm{o}}=0 \text { and } \\
a_{n+1}=\frac{a_{n}+1}{a_{n}+2}
\end{gathered}
$$

Problems

Compute the limit if it exists:

$$
\begin{gathered}
a_{\mathrm{o}}=1 \text { and } \\
a_{n+1}=\frac{a_{n}+1}{a_{n}+2}
\end{gathered}
$$

Problems

Compute the limit if it exists:

$$
\begin{gathered}
a_{\mathrm{o}}=0 \text { and } \\
a_{n+1}=a_{n}^{2}+\frac{1}{4}
\end{gathered}
$$

