MATH 6101 Fall 2008

The Cauchy Property

$+\infty$ and $-\infty$

1) They are *not* real numbers and do *not* necessarily obey the rules of arithmetic for real numbers.

2)We often act as if they do.3)We need guidelines.

Add $+\infty$ and $-\infty$ to **R** and extend the ordering by $-\infty < a < +\infty$ for every real number $a \in \mathbf{R} \cup \{+\infty, -\infty\}$.

$+\infty$ and $-\infty$

If $a \in \mathbf{R}$ then we define the following

1)
$$a + \infty = +\infty$$

2) $a - \infty = -\infty$

- 3) If a > 0, then $a \times \infty = \infty$ and $a \times -\infty = -\infty$
- 4) If a < 0, then $a \times \infty = -\infty$ and $a \times -\infty = +\infty$

We may adopt the following conventions: $a/\infty = 0$ and $a/(-\infty) = 0$

Limits of Sequences

Limit of $\{a_n\}$ exists IFF we can compute *L*.

Will this always work?

Can we always find the limit?

Do we have to be able to find the limit as a number?

Theorem (last lecture): Every convergent

sequence is bounded.

Is the converse true?

Is it true that every bounded sequence converges?

Find a proof or a counterexample.

A sequence $\{a_n\}$ is *increasing* if $a_n \le a_{n+1}$ for every n.

A sequence $\{a_n\}$ is *decreasing* if $a_n \ge a_{n+1}$ for every *n*.

A sequence is *monotone* (*monotonic*) if it is either increasing or decreasing.

Examples

- 1) Find an example of an increasing sequence.
- 2) Find an example of a decreasing sequence.
- 3) Find an example of a sequence that is not monotonic.

Increasing Sequences

29-Oct-2008

Decreasing Sequences

29-Oct-2008

Non-monotonic Sequences

Monotone Convergence Theorem

Theorem: *Every bounded monotonic sequence converges*.

Proof:

Let $\{a_n\}$ be a bounded increasing sequence and let $S = \{a_n \mid n \in N\}$. Since the sequence is bounded, $a_n < M$ for some real number M and for all n.

Therefore *S* is bounded and has a least upper bound. Let u = lub S and let $\varepsilon > 0$.

Proof:

Since u=lub S and $\varepsilon > 0$, $u - \varepsilon$ is **not** an upper bound for S. Thus there is an integer K so that $a_K > u - \varepsilon$. Since $\{a_n\}$ is increasing then for all n > K, $a_n \ge a_N$ and for all n > K $u - \varepsilon < a_n \le u$. Thus, $|a_n - u| < \varepsilon$ for all n > K and lim $a_n = u =$ lub S.

Consequences

1) The decimal representation of a real number converges.

$$m < m.d_{1}d_{2}d_{3}d_{4}... = m + \frac{d_{1}}{10} + \frac{d_{2}}{10^{2}} + \frac{d_{3}}{10^{3}} + \dots \le m + 1$$

Let $a_{n} = m.d_{1}d_{2}d_{3}d_{4}...d_{n}$. Then $a_{n} \le a_{n+1}$ so $\{a_{n}\}$ is increasing.

2) Let
$$a_0 = 1$$
 and $a_{n+1} = 1/(1 + a_n)$

Consequences

2) Let $a_0 = 1$ and $a_{n+1} = 1 + \sqrt{a_n}$. Does it converge? Is it monotone? $a_0 = 1$ $a_1 = 1 + \sqrt{a_0} = 2$ $a_2 = 1 + \sqrt{a_1} = 1 + \sqrt{2} \approx 2.4142...$ $a_3 = 1 + \sqrt{a_2} = 1 + \sqrt{2.4142...} \approx 2.55377...$

Prove it is increasing by induction on *n*.

Consequences

2) Let $a_0 = 1$ and $a_{n+1} = 1 + \sqrt{a_n}$. **Converges by Monotone Convergence** Theorem. To what does it converge? Assume: $\lim_{n\to\infty} a_n = L$ $a_{n+1} = 1 + \sqrt{a_n}$ $\lim_{n\to\infty} a_{n+1} = 1 + \lim_{n\to\infty} \sqrt{a_n}$ $L = 1 + \sqrt{\lim_{n \to \infty} a_n}$ $L = 1 + \sqrt{L}$ $(L-1)^2 = L \text{ so } L^2 - 3L + 1 = 0$ $L = (3 \pm \sqrt{(9-4)})/2 = (3 \pm \sqrt{5})/2$ Which one is it? It cannot be both. Why?

Theorem: Let $\{a_n\}$ be a sequence of real numbers.

- (i) If $\{a_n\}$ is an unbounded monotonically increasing sequence, then $\lim a_n = +\infty$.
- (ii) If $\{a_n\}$ is an unbounded monotonically decreasing sequence, then $\lim a_n = -\infty$.

<u>Theorem</u>: Suppose that $\{a_n\}$ is a monotone increasing sequence and $\{b_n\}$ is a monotone decreasing sequence such that

$$a_n \le b_n$$
 for all n = 0,1,2,...

and

$$\{a_n - b_n\} \to 0$$

Then $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$.

<u>Theorem</u>: Every sequence contains a monotone subsequence.

Proof: Let $\{a_n\}$ be a sequence. We say that a term a_n is *dominating* if $a_n > a_m$ for all m > n. *Claim*: Every sequence contains an infinite number or a finite number of dominating terms. (Note: finite could be 0.)

Proof (continued):

(i) Assume $\{a_n\}$ has an infinite number of dominating terms. Call these $a_{n_0}, a_{n_1}, a_{n_2}, ...$ where $n_0 < n_1 < n_2 < ...$ By definition

 $a_{n_0} > a_{n_1} > a_{n_2} > \dots$

which is the monotone subsequence

Proof (continued):

(ii) Assume $\{a_n\}$ has a finite number of dominating terms. Thus, there is an *m* so that for every n > m, a_n is not dominating. That means that for each n > m there exists a k > n so that $a_n \le a_k$. Let $n_0 = m$. By the above there is a $n_1 > n_0$ so that $a_{n_0} \le a_{n_1}$. Since $n_1 > n_0$ then there is $n_2 > n_1$ so that $a_{n_1} \le a_{n_2}$. This gives $a_{n_0} \le a_{n_1} \le a_{n_2} \le a_{n_2} \le \dots$ which is the required monotone subsequence.

Bolzano-Weierstrauss Theorem

Theorem: Every bounded sequence has a convergent subsequence.

The Cauchy Property

Definition 1: A sequence $\{a_n\}$ is said to have the Cauchy property if for every $\varepsilon > 0$ there is an index *K* so that

$$|a_{n+m} - a_n| < \varepsilon$$

for all $n \ge K$ and m = 1, 2, 3, ...

[Note: equivalent statement –

 $\{a_{n+m}\}_{m=0}^{\infty} \subset (a_n - \varepsilon, a_n + \varepsilon) \text{ for all } n \ge K.]$

The Cauchy Property

Definition 2: A sequence $\{a_n\}$ is said to have the Cauchy property if for every $\varepsilon > 0$ there is an index *K* so that if n,m > K then

$$|a_m-a_n|<\varepsilon.$$

Let $\{a_n\}$ be bounded – convergent or not, it does not matter.

Limiting behavior of $\{a_n\}$ depends only on the *tails* of the sequence, $\{a_n \mid n > N\}$.

Let $u_N = \text{glb}\{a_n \mid n > N\}$ Let $v_N = \text{lub}\{a_n \mid n > N\}$ FACT: If lim a_n exists, then it lies in $[u_N, v_N]$.

As *N* increases, the sets $\{a_n \mid n > N\}$ get smaller. Thus,

 $u_1 \le u_2 \le u_3 \le \dots \text{ and } v_1 \ge v_2 \ge v_3 \ge \dots$ Let $u = \lim_{N \to \infty} u_N \text{ and } v = \lim_{n \to \infty} v_N$

Both exist – Why?

Claim: $u \le v$

If $\lim_{n\to\infty} a_n$ exists, then $u_N \le \lim a_n \le v_N$ so $u \le \lim a_n \le v$.

u and *v* are useful whether $\lim a_n$ exists or not.

Definition: $u = \limsup a_n = \lim(\lim \{a_n \mid n > N\})$ and $v = \liminf a_n = \lim(glb \{a_n \mid n > N\})$

Note: Do not require that $\{a_n\}$ be bounded.

Precautions and Conventions. 1) If $\{a_n\}$ is not bounded above, lub $\{a_n\} = +\infty$ and we define lim sup $a_n = +\infty$ 2) If $\{a_n\}$ is not bounded below, glb $\{a_n\} = -\infty$ and we define lim inf $a_n = -\infty$.

Is it true that $\limsup \{a_n\} = \limsup \{a_n\}$? Not necessarily, because while it is true that $\limsup \{a_n\} \le \limsup \{a_n\}$, some of the values a_n may be much larger than $\limsup a_n$.

Note that $\limsup a_n$ is the largest value that *infinitely many* a_n 's can get close to.

<u>Theorem</u>: Let $\{a_n\}$ be a sequence of real numbers.

(i) If lim a_n is defined [as a real number, +∞ or -∞, then lim inf a_n = lim a_n = lim sup a_n.
(ii) If lim inf a_n =lim sup a_n, then lim a_n is defined and lim a_n =lim inf a_n =lim sup a_n.

Let $u_N = \text{glb}\{a_n \mid n > N\}, v_N = \text{lub}\{a_n \mid n > N\},\$ $u = \lim u_N = \lim \inf a_n$ and $v = \lim v_N = \limsup a_n$. (i) Suppose $\lim a_n = +\infty$. Let M > 0. There is $N \in \mathbb{N}$ so that if n > N then $a_n > M$. Then $u_N = \text{glb} \{a_n \mid n > N\} \ge M.$ So if m > N then $u_m \ge M$. Therefore $\lim u_N = \lim \inf a_n = +\infty$. Likewise, $\lim \sup a_n = +\infty$. Do the case that $\lim a_n = -\infty$ similarly.

Suppose that $\lim a_n = L \in \mathbf{R}$. Let $\varepsilon > 0$. There is $N \in \mathbb{N}$ so that $|a_n - L| < \varepsilon$ for n > N. $a_n < L + \varepsilon$ for n > N. Thus $v_N = \text{lub}\{a_n \mid n > N\} \le L + \varepsilon$. If m > N then $v_m \le L + \varepsilon$ for all $\varepsilon > 0$. Thus $\limsup a_n \leq L = \lim a_n$. Similarly, show that $\lim a_n \leq \lim \inf a_n$. Since $\liminf a_n \leq \limsup a_n$, we have $\lim \inf a_n = \lim a_n = \lim \sup a_n$.

(ii) If $\lim \inf a_n = \lim \sup a_n = \pm \infty$ easy to show that $\lim a_n = \pm \infty$. Suppose that $\lim \inf a_n = \lim \sup a_n = L$. We need to show that $\lim a_n = L$. Let $\varepsilon > 0$. Since $L = \lim v_N$ there is an $N_0 \in \mathbb{N}$ so that $|L - \operatorname{lub}\{a_n \mid n > N_0\}| < \varepsilon$. Thus, $\operatorname{lub}\{a_n \mid n > N_0\} < L + \varepsilon$ and

 $a_n < L + \varepsilon$ for all $n > N_0$.

Similarly, since $L = \lim u_N$ there is $N_1 \in \mathbb{N}$ so that

$$\begin{split} |L - \operatorname{glb}\{a_n \mid n > N_1\}| < \varepsilon. \\ \text{Thus, } \operatorname{glb}\{a_n \mid n > N_1\} > L - \varepsilon \text{ and} \\ a_n > L - \varepsilon \text{ for all } n > N_1. \\ \text{These imply } L - \varepsilon < a_n < L + \varepsilon \text{ for} \\ n > \max\{N_0, N_1\}. \\ \text{Equivalently, } |a_n - L| < \varepsilon \text{ for } n > \max\{N_0, N_1\} \\ \text{This proves that } \lim a_n = L. \end{split}$$

This tells us that if $\{a_n\}$ converges, then

 $\liminf a_n = \limsup a_n,$

so for large *N* the numbers lub $\{a_n \mid n > N\}$ and glb $\{a_n \mid n > N\}$ must be close together. This means that all of the numbers in the set

 $\{a_n \mid n > N\}$ must be close together.

Lemma:

Convergent sequences have the Cauchy property.

Proof:

Suppose that $\lim a_n = L$. $|a_n - a_m| = |a_n - L + L - a_m| \le |a_n - L| + |a_m - L|$ Let $\varepsilon > 0$, there is an integer N so that if k > N, $|a_k - L| < \varepsilon/2$. If m, n > N then $|a_n - a_m| \le |a_n - L| + |a_m - L| < \varepsilon/2 + \varepsilon/2 = \varepsilon$. Thus, $\{a_n\}$ has the Cauchy property.

<u>Theorem</u>:

A sequence is a convergent sequence if and only if it has the Cauchy property.

Proof: The previous lemma proves half of this. Show: any sequence with the Cauchy property must converge. Let $\{a_n\}$ have the Cauchy property. We know it is bounded by the previous lemma.

Show: $\liminf a_n = \limsup a_n$.

Let $\varepsilon > 0$. Since $\{a_n\}$ has the Cauchy property, there is an $N \in \mathbb{N}$ so that if m, n > N then $|a_n - a_m| < \varepsilon$. In particular, $a_n < a_m + \varepsilon$ for all m, n > N. This shows that $a_m + \varepsilon$ is an upper bound for $\{a_n \mid n > N\}$. Thus $v_N = \text{lub}\{a_n \mid n > N\} \le a_m + \varepsilon$ for m > N. This shows that $v_N - \varepsilon$ is a lower bound for $\{a_m \mid m > N\}$, so $v_N - \varepsilon \le \text{glb}\{a_m \mid m > N\} = u_N$.

Therefore

$$\begin{split} &\limsup a_n \leq v_N \leq u_N + \varepsilon \leq \liminf a_n + \varepsilon \\ &\operatorname{Since this holds for all } \varepsilon > 0, \text{ we have that} \\ &\lim \sup a_n \leq \liminf a_n \\ &\operatorname{This is enough to give us that the two} \\ &\operatorname{quantities are equal.} \end{split}$$

Compute the limit if it exists:

 $a_0 = 1$ and

$$a_{n+1} = \sqrt{a_n + \frac{1}{a_n}}$$

Compute the limit if it exists:

 $a_0 = 1$ and

$$a_{n+1} = 3 - \frac{1}{a_n}$$

Compute the limit if it exists:

 $a_{\rm o} = 0$ and

$$a_{n+1} = \frac{a_n + 1}{a_n + 2}$$

Compute the limit if it exists:

 $a_0 = 1$ and

$$a_{n+1} = \frac{a_n + 1}{a_n + 2}$$

Compute the limit if it exists:

 $a_0 = 0$ and

$$a_{n+1} = a_n^2 + \frac{1}{4}$$